#' The Expectation of U(t)/n in Weighted Logrank Test Z = U(t) / sqrt(V(t))
#'
#' This function calculates the asymptotic mean of U(t)/n,
#' where the weighted logrank test Z = U(t) / sqrt(V(t)).
#' Delta = E(U(t)/n)
#' Note: V(t)/n --> sigma2, Z = n^(-1/2)*U(t)/sqrt(V(t)/n).
#' E(Z) = mu = n^(1/2)*Delta/sigma
#'
#' @param DCO Analysis time, calculated from first subject in.
#' @param r Randomization ratio of experimental arm : control arm as r:1.
#' When r = 1, it is equal allocation. Default r = 1.
#' @param h0 Hazard function of control arm. h0(t) = log(2)/m0 means T~exponential distribution with median m0.
#' @param S0 Survival function of control arm. In general, S0(t) = exp(- integral of h0(u) for u from 0 to t).
#' but providing S0(t) can improves computational efficiency and
#' usually the survival function is known in study design. The density function f0(t) = h0(t) * S0(t).
#' @param h1 Hazard function of experimental arm. h1(t) = log(2)/m1 means T~exponential distribution with median m0.
#' @param S1 Survival function of experimental arm. In general, S1(t) = exp(- integral of h1(u) for u from 0 to t).
#' but providing S1(t) can improves computational efficiency and
#' usually the survival function is known in study design. The density function f1(t) = h1(t) * S1(t).
#' @param cuts A vector of cut points to define piece-wise distributions.
#' If cuts is not specified or incorrectly specified, it might occasionally have numerical integration issue.
#' @param rho Parameter for Fleming-Harrington (rho, gamma) weighted log-rank test.
#' @param gamma Parameter for Fleming-Harrington (rho, gamma) weighted log-rank test.
#' For log-rank test, set rho = gamma = 0.
#' @param tau Cut point for stabilized FH test, sFH(rho, gamma, tau); with weight
#' function defined as w(t) = s_tilda^rho*(1-s_tilda)^gamma, where
#' s_tilda = max(s(t), s.tau) or max(s(t), s(tau)) if s.tau = NULL
#' tau = Inf reduces to regular Fleming-Harrington test(rho, gamma)
#' @param s.tau Survival rate cut S(tau) at t = tau1; default 0.5, ie. cut at median.
#' s.tau = 0 reduces to regular Fleming-Harrington test(rho, gamma)
#' @param f.ws Self-defined weight function of survival rate, eg, f.ws = function(s){1/max(s, 0.25)}
#' When f.ws is specified, sFH parameter will be ignored.
#' @param Lambda Cumulative distribution function of enrollment.
#' @param G0 Cumulative distribution function of drop-off for control arm, eg, G.ltfu=function(t){1-exp(-0.03/12*t)}
#' is the distribution function for 3 percent drop-off in 12 months of followup.
#' @param G1 Cumulative distribution function of drop-off for experimental arm, eg, G.ltfu=function(t){1-exp(-0.03/12*t)}
#' is the distribution function for 3 percent drop-off in 12 months of followup.
#'
#'
#'
#' @examples
#' #1:1 randomization, control~exp(median=12);
#' #experiment~delayed effect 6 mo and HR 0.6 after delay
#' #Fleming-Harrington (1,1) test; Enrollment: 18 mo with weight 1.5
#' #drop-off rate: 3% in 1-year of follow-up in control arm; no drop-off in exp arm
#' HR = 0.6; delay = 6; lam0 = log(2) / 12;
#' h0 = function(t){lam0}; S0 = function(t){exp(-lam0 * t)}
#' h1.D6 = function(t){lam0*as.numeric(t < delay)+HR*lam0*as.numeric(t >= delay)}
#' c = exp(-delay*lam0*(1-HR));
#' S1.D6 = function(t){exp(-lam0*t)*as.numeric(t<delay) + c*exp(-HR*lam0*t)*as.numeric(t>=delay)}
#' Lambda = function(t){(t/18)^1.5*as.numeric(t <= 18) + as.numeric(t > 18)}
#' drop0 = 0.03/12; drop1 = 0
#'
#' wlr.Delta(DCO = 24, r = 1, h0 = h0, S0 = S0,h1 = h1.D6,S1 = S1.D6,
#' cuts=c(6), rho = 0, gamma = 0, tau = NULL, s.tau = 0, f.ws = NULL,
#' Lambda = Lambda, G0 = function(t){1-exp(-drop0 * t)}, G1 = function(t){0})
#'
#' wlr.sigma2(DCO = 24, r = 1, h0 = h0, S0 = S0,h1 = h1.D6,S1 = S1.D6,
#' cuts=c(6), rho = 0, gamma = 0, tau = NULL, s.tau = 0, f.ws = NULL,
#' Lambda = Lambda, G0 = function(t){1-exp(-drop0 * t)}, G1 = function(t){0})
#'
#' @export
wlr.Delta = function(DCO = 24, r = 1,
h0 = function(t){log(2)/12}, S0= function(t){exp(-log(2)/12 * t)},
h1 = function(t){log(2)/12*0.70}, S1= function(t){exp(-log(2)/12 * 0.7 * t)},
cuts=c(6),
rho = 0, gamma = 0, tau = NULL, s.tau = 0, f.ws = NULL,
Lambda = function(t){(t/18)*as.numeric(t <= 18) + as.numeric(t > 18)},
G0 = function(t){0}, G1 = function(t){0}){
#Re-parameterization as consistent with the manuscript; r1 is proportion of experimental arm subjects.
r1 = r / (r + 1); r0 = 1 - r1
#Density functions
f0 = function(t) {return(h0(t) * S0(t))}
f1 = function(t) {return(h1(t) * S1(t))}
#Pooled survival function for weight function
S.bar = function(t){r0 * S0(t) + r1 * S1(t)}
#At-risk function and density function adjusted by censoring mechanism
S0.tilda = function(t){S0(t)*(1-G0(t))}
S1.tilda = function(t){S1(t)*(1-G1(t))}
f0.tilda = function(t){f0(t)*(1-G0(t))}
f1.tilda = function(t){f1(t)*(1-G1(t))}
S.tilda = function(t){r0 * S0.tilda(t) + r1 * S1.tilda(t)}
f.tilda = function(t){r0 * f0.tilda(t) + r1 * f1.tilda(t)}
#f.delta function
f.delta = function(t){
pi0(t)*pi1(t)*S.tilda(t)*(h1(t)-h0(t))
}
#Proportion of at-risk at each arm
pi1 = function(t){r1 * S1.tilda(t) / S.tilda(t)}
pi0 = function(t){1 - pi1(t)}
#Weight function
f.w = function(t, f.S = S0, f.ws=f.ws, tau=tau, s.tau=s.tau, rho=rho, gamma=gamma){
s = f.S(t)
#First priority: f.ws
if(!is.null(f.ws)){
w = f.ws(s)
}else {
#Second priority: s.tau
if (!is.null(s.tau)){
s.til = apply(cbind(s, s.tau), MARGIN=1,FUN=max);
} else {
s.til = apply(cbind(s, f.S(tau)), MARGIN=1,FUN=max);
}
w = s.til^rho*(1-s.til)^gamma
}
return(w)
}
##Intervals for piecewise integration
at = unique(c(0, cuts[cuts <= DCO], DCO))
## Delta ##
f.Delta = function(t){
w = f.w(t, f.S = S.bar, f.ws=f.ws, tau=tau, s.tau=s.tau, rho=rho, gamma=gamma)
return(w *Lambda(DCO-t)*f.delta(t))
}
Delta = 0
for (j in 1:(length(at)-1)){
Deltaj = integrate(f.Delta, lower=at[j], upper=at[j+1], abs.tol=1e-8)$value
Delta = Delta + Deltaj
}
return(Delta)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.