# Collecting the required information
time_points <- suppressWarnings(as.numeric(gsub("([^0-9])", "",
colnames(dip1))))
tcol <- which(!is.na(time_points))
b1 <- dip1$type == "R"
# Hotelling's T2 statistics
l_hs <- get_T2_two(m1 = as.matrix(dip1[b1, tcol]),
m2 = as.matrix(dip1[!b1, tcol]),
signif = 0.05)
# Calling gep_by_nera()
res <- gep_by_nera(n_p = as.numeric(l_hs[["Parameters"]]["df1"]),
kk = as.numeric(l_hs[["Parameters"]]["K"]),
mean_diff = l_hs[["means"]][["mean.diff"]],
m_vc = l_hs[["S.pool"]],
ff_crit = as.numeric(l_hs[["Parameters"]]["F.crit"]),
y = rep(1, times = l_hs[["Parameters"]]["df1"] + 1),
max_trial = 100, tol = 1e-9)
# Expected result in res[["points"]]
# [,1]
# t.5 -15.7600077
# t.10 -13.6501734
# t.15 -11.6689469
# t.20 -9.8429369
# t.30 -6.6632182
# t.60 -0.4634318
# t.90 2.2528551
# t.120 3.3249569
# -17.6619995
# Rows t.5 to t.120 represent the points on the CR bounds.The unnamed last row
# represents the Lagrange multiplier lambda.
# If 'max_trial' is too small, the Newton-Raphson search may not converge.
\dontrun{
tryCatch(
gep_by_nera(n_p = as.numeric(l_hs[["Parameters"]]["df1"]),
kk = as.numeric(l_hs[["Parameters"]]["K"]),
mean_diff = l_hs[["means"]][["mean.diff"]],
m_vc = l_hs[["S.pool"]],
ff_crit = as.numeric(l_hs[["Parameters"]]["F.crit"]),
y = rep(1, times = l_hs[["Parameters"]]["df1"] + 1),
max_trial = 5, tol = 1e-9),
warning = function(w) message(w),
finally = message("\nMaybe increasing the number of max_trial could help."))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.