partdep | R Documentation |
Produce partial dependence plots for examing each variable's contribution to the predicted response.
partdep(object, Xvar, Yvar = NULL, fact = FALSE, var.cond = NULL,
plotmap = FALSE, ylimit = NULL, plot2file = FALSE,
se.fit = FALSE, too.far = 0.1, sp.id = NULL, palette)
## S3 method for class 'bag'
partdep(object, Xvar, Yvar = NULL, fact = FALSE,
var.cond = NULL, plotmap = FALSE, ylimit = NULL,
plot2file = FALSE, se.fit = FALSE, too.far = 0.1, sp.id = NULL,
palette)
object |
object of class |
Xvar |
name of variable/s to plot. This can be a single variable e.g. "Len" (1D plot) or the name of two variables e.g. c("Lon", "Lat") for a 2D plot. Currenly only 2D plots for longitude and latitude are implemented. |
Yvar |
vector of prey names where partial dependence plots are required. If NULL (default) then plots are produced for all prey. |
fact |
logical. Is the variable a factor? This only works for 1D plots |
var.cond |
name of the conditioning variable used to condition each plot by. |
plotmap |
logical. Should a map be plotted? Only useful if longitude and latitude are being plotted as a 2D plot. (default = FALSE) |
ylimit |
range of values the y-axis takes when plotting. Defaults to the range of the y-data.
See |
plot2file |
logical. Should the plots be written to file. If so, the file name defaults to "partdep.pdf" in the current working directory. |
se.fit |
logical. Should standard errors be produced and plotted on the figures of the 1D plots? (default: FALSE) |
too.far |
How far to clip the map (Default = 0.1) |
sp.id |
Species ID (Default = NULL) |
palette |
colour palette (created using the apc function) |
There are many different combinations of arguments for producing 1D and 2D plots. Illustrations of the combinations are shown in the examples section below.
1D and 2D plots of partial dependence.
Kuhnert, P.M., Duffy, L. M and Olson, R.J. (2012) The Analysis of Predator Diet and Stable Isotope Data, Journal of Statistical Software, In Prep.
Kuhnert PM, Kinsey-Henderson A, Bartley R, Herr A (2010) Incorporating uncertainty in gully erosion calculations using the random forests modelling approach. Environmetrics 21:493-509. doi:10.1002/env.999
# Assigning prey colours for default palette
#val <- apc(x = yftdiet, preyfile = PreyTaxonSort, check = TRUE)
#node.colsY <- val$cols
#dietPP <- val$x # updated diet matrix with Group assigned prey taxa codes
# Fitting the classification tree
#yft.dp <- dpart(Group ~ Lat + Lon + Year + Quarter + SST + Length,
#data = dietPP, weights = W, minsplit = 10, cp = 0.001)
#yft.pr <- prune(yft.dp, se = 1)
#plot(yft.pr, node.cols = node.colsY)
# Bagging
# Bagging with NO spatial bootstrapping
# yft.bag <- bagging(Group ~ Lat + Lon + Year + Quarter + SST + Length,
# data = dietPP, weights = W, minsplit = 50,
# cp = 0.001, nBaggs = 500, predID = "TripSetPredNo")
# 1D plots based on covariates in tree model
#partdep(object = yft.bag, Xvar = "Length")
#partdep(object = yft.bag, Xvar = "Length", se.fit = TRUE)
#partdep(object = yft.bag, Xvar = "SST")
#partdep(object = yft.bag, Xvar = "Quarter", fact = TRUE, se.fit = TRUE)
#partdep(object = yft.bag, Xvar = "Year", fact = TRUE)
# 2D plots of Longitude and Latitude
#partdep(object = yft.bag, Xvar = c("Lon", "Lat"), plotmap = TRUE)
# 2D plots of Longitude and Latitude conditioning on Year
#partdep(object = yft.bag, Xvar = c("Lon", "Lat"), plotmap = TRUE,
# leg.pos="topleft", too.far = 0.05, sp.id = "F.Ost")
#partdep(object = yft.bag, Xvar = c("Lon", "Lat"), var.cond = list(Year = 2004),
# too.far = 0.05, plotmap = TRUE, sp.id = "F.Ost")
# 2D plots of SST and Length
#partdep(object = yft.bag, Xvar = c("SST", "Length"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.