#' Check_Daily_Updates
#'
#' For each location, check for daily updates and then check
#' for daily records. If there are gaps, pad out information
#' so there is a consecutive record.
#'
#' @param corona_m data frame with corona virus data from WHO
#'
#' @export
#'
#'
Check_Daily_Updates <- function(corona_m){
# for each location, check for daily updates
loc <- unique(corona_m$location)
corona_update <- NULL
for(i in 1:length(loc)){
tmp <- corona_m[corona_m$location == loc[i],]
# tmp <- subset(corona_m, location == loc[i])
dd <- diff(tmp$date)
if(!(all(dd == 1))){
# pad out records
start_date <- tmp$date[1]
end_date <- tmp$date[nrow(tmp)]
d_seq <- seq(from = start_date, to = end_date, by = 60*60*24)
df <- data.frame(date = d_seq,
location = rep(unique(tmp$location), length(d_seq)),
new_cases = rep(NA, length(d_seq)),
new_deaths = rep(NA, length(d_seq)),
total_cases = rep(NA, length(d_seq)),
total_deaths = rep(NA, length(d_seq)))
m <- match(tmp$date, df$date)
df$new_cases[m] <- tmp$new_cases
df$new_deaths[m] <- tmp$new_deaths
df$total_cases[m] <- tmp$total_cases
df$total_deaths[m] <- tmp$total_deaths
df[is.na(df$new_cases),]
for(i in 1:nrow(df)){
if(is.na(df$new_cases[i])){
df$new_cases[i] <- df$new_cases[i-1]
df$new_deaths[i] <- df$new_deaths[i-1]
df$total_cases[i] <- df$total_cases[i-1]
df$total_deaths[i] <- df$total_deaths[i-1]
}
}
corona_update <- rbind(corona_update, df)
}
else
corona_update <- rbind(corona_update, tmp)
}
corona_update
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.