View source: R/gibbs_pspline.R
gibbs_pspline | R Documentation |
This function uses the Whittle likelihood and obtains samples from the pseudo-posterior to infer the spectral density of a stationary time series. A P-spline prior is allocated on the spectral density function.
gibbs_pspline(
data,
Ntotal,
burnin,
thin = 1,
tau.alpha = 0.001,
tau.beta = 0.001,
phi.alpha = 1,
phi.beta = 1,
delta.alpha = 1e-04,
delta.beta = 1e-04,
k = NULL,
eqSpacedKnots = FALSE,
degree = 3,
diffMatrixOrder = 2,
printIter = 100,
psd = NULL,
add = FALSE
)
data |
numeric vector |
Ntotal |
total number of iterations to run the Markov chain |
burnin |
number of initial iterations to be discarded |
thin |
thinning number (post-processing) |
tau.alpha, tau.beta |
prior parameters for tau (Inverse-Gamma) |
phi.alpha, phi.beta |
prior parameters for phi (Gamma) |
delta.alpha, delta.beta |
prior parameters for delta (Gamma) |
k |
number of B-spline densities in the mixture |
eqSpacedKnots |
logical value indicating whether the knots are equally spaced or defined according to the periodogram |
degree |
positive integer specifying the degree of the B-spline densities (default is 3) |
diffMatrixOrder |
positive integer specifying the order of the difference penalty matrix in the P-splines (default is 2) |
printIter |
positive integer specifying the periodicity of the iteration number to be printed on screen (default 100) |
psd |
output from |
add |
logical value indicating whether to add pilot posterior samples in the "psd" object to the current analysis |
The function gibbs_pspline
is an implementation of the (serial version of the) MCMC algorithm presented in Maturana-Russel et al. (2019). This algorithm uses a P-spline prior to estimate the spectral density of a stationary time series and is similar to the B-spline prior algorithm of Edwards et al. (2018), which used a B-spline prior allowing the number of B-spline densities and knot locations to be variable.
We define the prior on the spectral density as
f(w) = \tau \sum_{j=1}^{k}w_{j}B_{j}(w)
where B_{j}
is the B-spline density. The following prior is allocated indirectly on the weights w_j
:
v|\phi, \delta \sim N_{k-1}(0, (\phi D^\top D)^{-1})
\phi|\delta \sim Gamma(\alpha_{\phi}, \delta \beta_{\phi})
\delta \sim Gamma(\alpha_{\delta}, \beta_{\delta})
where
v_{j} = \log \left( \frac{w_{j}}{1-\sum_{j=1}^{k-1} w_{j}} \right)
A list with S3 class ‘psd’ containing the following components:
psd.median,psd.mean |
psd estimates: (pointwise) posterior median and mean |
psd.p05,psd.p95 |
90% pointwise credibility interval |
psd.u05,psd.u95 |
90% uniform credibility interval |
fpsd.sample |
posterior spectral density estimates |
anSpecif |
a list with some of the specifications of the analysis |
n |
integer length of input time series |
tau,phi,delta,V |
posterior traces of model parameters |
ll.trace |
trace of log likelihood |
pdgrm |
periodogram |
db.list |
B-spline densities |
DIC |
deviance information criterion |
count |
acceptance probabilities for the weigths |
Edwards, M. C., Meyer, R., and Christensen, N. (2018), Bayesian nonparametric spectral density estimation using B-spline priors, Statistics and Computing, <https://doi.org/10.1007/s11222-017-9796-9>.
Maturana-Russel, P., and Meyer, R. (2019), Spectral density estimation using P-spline priors. arXiv:1905.01832.
plot.psd
## Not run:
set.seed(1)
# Generate AR(1) data with rho = 0.9
n = 128
data = arima.sim(n, model = list(ar = 0.9))
data = data - mean(data)
# Run MCMC (may take some time)
pilotmcmc = gibbs_pspline(data, 2500, 500); # pilot run used in mcmc1 analysis
mcmc1 = gibbs_pspline(data, 3000, 2000, psd = pilotmcmc);
mcmc2 = gibbs_pspline(data, 3000, 0, psd = mcmc1, add = TRUE); # reciclying mcmc1 samples
require(beyondWhittle) # For psd_arma() function
freq = 2 * pi / n * (1:(n / 2 + 1) - 1)[-c(1, n / 2 + 1)] # Remove first and last frequency
psd.true = psd_arma(freq, ar = 0.9, ma = numeric(0), sigma2 = 1) # True PSD
plot(mcmc1) # Plot log PSD (see documentation of plot.psd)
lines(freq, log(psd.true), col = 2, lty = 3, lwd = 2) # Overlay true PSD
plot(mcmc2) # Plot log PSD (see documentation of plot.psd)
lines(freq, log(psd.true), col = 2, lty = 3, lwd = 2) # Overlay true PSD
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.