library(ggplot2)
library(dplyr)
library(data.table)
# Global variables
pipeline_dir <- "/media/sf_OneDrive_-_cumc.columbia.edu/rwalk/pipeline"
input_dir <- paste(pipeline_dir, "06_Library", sep = "/")# WT - Pre-AMPH
# Constants
pulses <- 30
pulse_freq <- 50
bin_size <- 2.0
electrode_distance <- 1000
diffusion_coefficient <- 2.7 * 10^-6
convert_current <- FALSE
fit_region = "fall"
plot_duration_sec = 40
dat_fil <- "stim_df.csv"
stim_df <- fread(paste(input_dir, dat_fil, sep = "/"))
plot_params <- stim_df %>%
distinct(animal, genotype, stimulus, include) %>%
filter(include == TRUE) %>%
arrange(animal, stimulus)
plot_params <- plot_params[ , -4]
plot_params <- cbind(plot_params,
"release" = as.double(NA),
"vmax" = as.double(NA),
"km" = as.double(NA),
"dead_space_distance" = as.double(NA),
"base_tolerance" = as.double(NA)
)
animals <- unique(plot_params$animal)
animals
# Starter with NA for params.
# write.csv(plot_params, paste(input_dir, "dead_space_params_genotype.csv", sep = "/"))
# Pick off one animal.
an_animal <- animals[1]
dat <- stim_df %>%
filter(animal == an_animal & include == TRUE & stim_time_sec <= 120)
qplot(dat$time_sec, dat$electrode_concentration, geom = "line")
# Fit one stim.
a_stim <- 1
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 3.9
vmax <- 4.8
km <- 3
dead_space_distance <- 12
base_tolerance <- 0.05
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec,
dead_space = dead_space_distance)
# Fit one stim.
a_stim <- 2 # Bad baseline.
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 3.9
vmax <- 4.8
km <- 3
dead_space_distance <- 12
base_tolerance <- 0.05
plot_duration_sec = 10
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec)
# Fit one stim.
a_stim <- 3
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 4.8
vmax <- 4.8
km <- 3.5
dead_space_distance <- 14
base_tolerance <- 0.05
plot_duration_sec = 10
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec)
# Fit one stim.
a_stim <- 4
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 7
vmax <- 4.8
km <- 5
dead_space_distance <- 14
base_tolerance <- 0.17
plot_duration_sec = 20
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec)
# Fit one stim.
a_stim <- 5
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 11.5
vmax <- 4.8
km <- 12
dead_space_distance <- 14
base_tolerance <- 0.17
plot_duration_sec = 40
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec)
# Fit one stim.
a_stim <- 6
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 11.5
vmax <- 4.8
km <- 12
dead_space_distance <- 14
base_tolerance <- 0.17
plot_duration_sec = 40
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec)
# Fit one stim.
a_stim <- 7
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 11.5
vmax <- 4.8
km <- 12
dead_space_distance <- 14
base_tolerance <- 0.17
plot_duration_sec = 40
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec)
# Fit one stim.
a_stim <- 8
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 10.7
vmax <- 4.8
km <- 22
dead_space_distance <- 14
base_tolerance <- 0.17
plot_duration_sec = 40
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec,
dead_space = dead_space_distance)
# Fit one stim.
a_stim <- 9
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 9.8
vmax <- 4.8
km <- 31
dead_space_distance <- 14
base_tolerance <- 0.5
plot_duration_sec = 40
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec)
# Fit one stim.
a_stim <- 11
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 9.0
vmax <- 4.8
km <- 31
dead_space_distance <- 14
base_tolerance <- 0.5
plot_duration_sec = 40
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec)
# Fit one stim.
a_stim <- 12
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 8.8
vmax <- 4.8
km <- 28
dead_space_distance <- 14
base_tolerance <- 0.1
plot_duration_sec = 40
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec)
# Fit one stim.
a_stim <- 13
dat_fit <- select(dat, stimulus, stim_time_sec, electrode_concentration) %>%
filter(stimulus == a_stim)
dat_fit <- rename(dat_fit, time_sec = stim_time_sec, "electrode" = electrode_concentration)
dat_fit <- dat_fit[ , -1]
# Variables
release <- 9.0
vmax <- 4.8
km <- 29
dead_space_distance <- 16
base_tolerance <- 0.5
plot_duration_sec = 40
compare_pulse(dat = dat_fit, fil = paste(an_animal, a_stim),
vmax = vmax, km = km,
pulses = pulses,
pulse_freq = pulse_freq,
release = release,
bin_size = bin_size,
electrode_distance = electrode_distance,
dead_space_distance = dead_space_distance,
diffusion_coefficient = diffusion_coefficient,
convert_current = convert_current,
fit_region = fit_region,
base_tolerance = base_tolerance,
plot_duration_sec = plot_duration_sec)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.