plotMCMC: Plot Posterior Distribution from MCMC Procedure

Description Usage Arguments Value Examples

View source: R/plot_fxns.R

Description

plotMCMC Creates a PDF file with plots of the posterior distributions of all the mechanistic model \ parameters the User has chosen to fit and of the AICc score

Usage

1
2
3
plotMCMC(mydata = NULL, tab.model = NULL, tab.fit = NULL,
  tab.cpl = NULL, opt.list = NULL, opt.cpl = NULL, run.list = NULL,
  imask = NULL, ireal = 1, idevice = 1)

Arguments

mydata

A dataframe with all the available data for this DICE run

tab.model

The MCMC history of the direct fit of the model data

tab.cpl

The MCMC history of the two parameters that help define the coupling matrix: the saturation distance and the distance power.

opt.list

A logical list of all the parameters DICE recognizes and can optimize with TRUE/FALSE

opt.cpl

A logical list for the two parameters that help define the coupling matrix.

run.list

a list with parameters used for the MCMC procedure

imask

AN array of integers with +1/-1 values for parameters that are optimized (or not)

ireal

- Integer, the MCMC chain number

tab

The MCMC history of an indirect fit of the model using a coupled model. This array includes all the parameters except the two that define the coupling matrix.

Value

err=0 if plots were created

Examples

1
2
plotMCMC(mydata=mydata, Tg = Tg, tab.model = tab.model, tab.fit= tab.fit, tab.cpl = tab.cpl,
opt.list=opt.list, opt.cpl = opt.cpl, run.list = run.list, imask = imask, ireal = ireal)

predsci/DICE documentation built on Aug. 9, 2019, 9:41 a.m.