knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The goal of mask is to provide a framework to detect spatial anomalies in multivariate spatio-temporal data (tensor data, multiway data). An anomaly is a spatial point or region that deviates significantly from the global and/or local distribution of a given network
You can install mask from github with:
# install.packages("devtools") devtools::install_github("pridiltal/mask")
This is a basic example which shows you how to solve a common problem:
library(mask) library(rrcov3way) data(Arno) result <- find_spatial_outlier( data = Arno, tensor_decom = "Tucker3") p <- plot_spatial_outliers(X = result$out_data) print(p)
library(tidyverse) library(purrr) data <- purrr::array_tree(Arno, 3) %>% combine() %>% as_tibble() %>% setNames(., colnames(Arno)) %>% mutate( site = rep(rownames(Arno), dim(Arno)[3]), time = rep(dimnames(Arno)[[3]], each = dim(Arno)[1]), type = rep(result$out_data$type, dim(Arno)[3]) ) %>% pivot_longer(1:11, names_to = "ID") p <- data %>% ggplot(aes(x = ID, y = value, colour = type, group = site)) + geom_line() + facet_wrap(~time, ncol = 1, scales = "free_y") + scale_color_viridis_d() print(p)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.