find_spatial_outlier: Generate two dimensional feature space from tensor data.

Description Usage Arguments Value Examples

View source: R/find_spatial_outlier.R

Description

This function converts the original three way dataset into two dimensional feature space.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
find_spatial_outlier(
  data,
  ncomp = 2,
  center = TRUE,
  center.mode = c("A", "B", "C"),
  scale = TRUE,
  scale.mode = c("A", "B", "C"),
  alpha = 0.01,
  tensor_decom = c("Tucker3", "parafac")
)

Arguments

data

3-way array of data, A mode- space

ncomp

Number of components. Default is set to 2

center

Whether to center the data

center.mode

If centering the data, on which mode to do this

scale

Whether to scale the data

scale.mode

scaling the data, on which mode to do this

alpha

Threshold for determining the cutoff for outliers.

tensor_decom

Method to decompose the 3-way array

Value

a list with components

outliers

The indexes of the spatial observations determined to be outliers.

out_scores

Outliying score of each spatial observation

type

Type of each spatial observation: outlier or typical

plot_data

A-mode component data with ourlying measures

Examples

1
2
3
4
5
6
library(rrcov3way)
data(Arno)
result <- find_spatial_outlier(
  data = Arno, tensor_decom = "Tucker3"
)
result$out_data

pridiltal/mask documentation built on Dec. 22, 2021, 9:51 a.m.