Description Usage Arguments Details Author(s) References See Also Examples
Reports the RMSE, AIC, and variable importances for a partition model or the variable importances from a random forest.
| 1 | summarize.tree(TREE)
 | 
| TREE | A partition model created with  | 
Extracts the RMSE and AIC of a partition model and the variable importances of partition models or random forests.
Adam Petrie
Introduction to Regression and Modeling
| 1 2 3 4 5 6 7 8 9 10 11 12 |   data(WINE)
	TREE <- rpart(Quality~.,data=WINE,control=rpart.control(cp=0.01,xval=10,minbucket=5))
	summarize.tree(TREE)
	RF <- randomForest(Quality~.,data=WINE)
	summarize.tree(RF)
	
	data(NFL)
	TREE <- rpart(X4.Wins~.,data=NFL,control=rpart.control(cp=0.002,xval=10,minbucket=5))
	summarize.tree(TREE)
	RF <- randomForest(X4.Wins~.,data=NFL,ntrees=500)
	summarize.tree(RF)
	 
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.