comp | R Documentation |
Fit composition model for Moose using a multinomial model to capture how predictors affect composition data; calculate prediction intervals based on composition model; and extract useful summaries.
mc_check_comp(x)
mc_fit_comp(x, vars = NULL)
mc_models_comp(model_list_comp, coefs = TRUE)
mc_predict_comp(
total_model_id,
comp_model_id,
model_list_total,
model_list_comp,
x,
do_avg = FALSE,
fix_mean = FALSE,
PI = NULL
)
subset_CPI_data(CPI, ss)
pred_density_moose_CPI(CPI, ...)
x |
A Moose data frame object. |
vars |
Column names of 'x' to be used as predictors for the composition model. |
model_list_comp |
Named list of total composition models. |
coefs |
logical, return coefficient table too. |
total_model_id |
Model ID or model IDs for total moose model (can be multiple model IDs from 'names(model_list_total)'). |
comp_model_id |
Model ID or model IDs for composition model (single model ID from 'names(model_list_comp)'). |
model_list_total |
Named list of total moose models. |
do_avg |
Logical, to do model averaging or not. |
fix_mean |
logical, use the fixed (rounded) mean as the Multinomial size instead of the bootstrap PI counts. |
PI |
Total Moose PI object. |
CPI |
Composition PI object. |
ss |
A subset of rows (logical or numeric vector). |
... |
Other arguments passed to underlying functions. |
mc_options(B=10)
x <- read.csv(
system.file("extdata/MayoMMU_QuerriedData.csv",
package="moosecounter"))
## Prepare Moose data frame object
x <- mc_update_total(x)
## Total moose model list
vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815",
"NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf",
"ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815")
ML <- list()
ML[["Model 0"]] <- mc_fit_total(x, dist="ZINB")
ML[["Model 1"]] <- mc_fit_total(x, vars[1:2], dist="ZINB")
ML[["Model 2"]] <- mc_fit_total(x, vars[2:3], dist="ZIP")
ML[["Model 3"]] <- mc_fit_total(x, vars[3:4], dist="ZINB")
## Composition odel list
CML <- list()
CML[['FireDEMSub']] <- mc_fit_comp(x, "Fire8212_DEM815")
## Stats from the models
mc_models_comp(CML)
## Calculate PI
CPI <- mc_predict_comp(
total_model_id="Model 3",
comp_model_id='FireDEMSub',
model_list_total=ML,
model_list_comp=CML,
x=x,
do_avg=FALSE)
## Predict density
pred_density_moose_CPI(CPI)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.