total | R Documentation |
'switch_response' switches between total Moose vs. cows only. This sets the column name for total Moose estimation. 'mc_update_total' Updates/prepares the Moose data set for downstream analyses (i.e. calculates some derived variables, sets a surveyed/unsurveyed indicator, and optionally takes a subset). 'mc_fit_total' fit total Moose abundance models. 'mc_models_total' prints out estimates from the models.
switch_response(type = "total")
mc_update_total(x, srv = NULL, ss = NULL)
mc_fit_total(
x,
vars = NULL,
zi_vars = NULL,
dist = "ZINB",
weighted = FALSE,
robust = FALSE,
intercept = c("both", "count", "zero", "none"),
xv = FALSE,
...
)
mc_models_total(ml, x, coefs = TRUE)
mc_predict_total(model_id, ml, x, do_boot = TRUE, do_avg = FALSE)
mc_get_pred(PI, ss = NULL)
pred_density_moose_PI(PI)
mc_plot_residuals(model_id, ml, x)
mc_plot_predpi(PI)
mc_plot_pidistr(PI, id = NULL, plot = TRUE, breaks = "Sturges")
mc_plot_predfit(i, PI, ss = NULL, interactive = FALSE)
type |
The type of the response, can be '"total"' or '"cows"' for 'switch_response'. |
x |
A data frame with Moose data, or a data frame from 'mc_update_total()'. |
srv |
Logical vector, rows of 'x' that are surveyed, falls back to global options when 'NULL'. |
ss |
Logical vector to subset 'x', default is to take no subset. |
vars |
column names of 'x' to be used as predictors for the count model. |
zi_vars |
optional, column names of 'x' to be used as predictors for the zero model. |
dist |
Count distribution ('P', 'NB', 'ZIP', 'ZINB'). |
weighted |
Logical, to use weighting to moderate influential observations. |
robust |
Logical, use robust regression approach. |
intercept |
Which intercepts to keep. Dropped intercepts lead to regression through the origin (at the linear predictor scale). |
xv |
Logical, should leave-one-out error be calculated. |
... |
Other arguments passed to 'zeroinfl2()'. |
ml |
Named list of models. |
coefs |
logical, return coefficient table too. |
model_id |
model ID or model IDs (can be multiple from 'names(ml)'). |
do_boot |
Logical, to do bootstrap or not. |
do_avg |
Logical, to do model averaging or not. |
PI |
PI object returned by 'mc_predict_total()' |
id |
Cell ID. |
plot |
Logical, to plot or just give summary. |
breaks |
Breaks argument passed to 'graphics::hist()'. |
i |
Column (variable) name or index. |
interactive |
Logical, draw interactive plot. |
mc_options(B=10)
x <- read.csv(
system.file("extdata/MayoMMU_QuerriedData.csv",
package="moosecounter"))
#switch_response("cows") # for cows only
switch_response("total")
x <- mc_update_total(x)
mc_plot_univariate("Subalp_Shrub_250buf", x, "ZINB")
vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815",
"NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf",
"ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815")
mc_plot_multivariate(vars, x)
ML <- list()
ML[["Model 0"]] <- mc_fit_total(x, dist="ZINB")
ML[["Model 1"]] <- mc_fit_total(x, vars[1:2], dist="ZINB")
ML[["Model 2"]] <- mc_fit_total(x, vars[2:3], dist="ZIP")
ML[["Model 3"]] <- mc_fit_total(x, vars[3:4], dist="ZINB")
mc_models_total(ML, x)
mc_plot_residuals("Model 3", ML, x)
PI <- mc_predict_total(
model_id=c("Model 1", "Model 3"),
ml=ML,
x=x,
do_boot=TRUE, do_avg=TRUE)
mc_get_pred(PI)
pred_density_moose_PI(PI)
mc_plot_predpi(PI)
mc_plot_pidistr(PI)
mc_plot_pidistr(PI, id=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.