knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 4.1, fig.width = 6.3, fig.path = "Comp_board/", echo = FALSE, message = FALSE, warning = FALSE ) # library(ficomp) devtools::load_all() library(dplyr) library(forcats) library(ggplot2) library(tidyr) library(ggptt) library(glue) library(ggthemes) library(purrr) set_board_theme(base_size = 10) fig_height <- 10 data("data_main_annual") pdat_annual <- data_main_annual %>% filter(time >= 2000) mean_range <- 2000:(max(data_main_annual$time)) geos <- c(Suomi = "FI", Ruotsi = "SE", Saksa = "DE", Ranska = "FR", euroalue = "EA19", "Itävalta" = "AT", Espanja = "ES")
Eri määritelmillä laskettuna
q_dat %>% filter(geo == "FI", time >= "1995-01-01") %>% select(geo, time, nulc, nulc_va, nulc_hw, nulc_hw_va, nulc_aper, nulc_aper_va) %>% gather(ind, values, -geo, -time) %>% group_by(geo, ind) %>% mutate(change = 100 * (values / lag(values, 4, order_by = time) - 1)) %>% ungroup() %>% gather(vars, values, values, change) %>% translate(vars, c(change = "Muutos, %", values = "Taso, indeksi 2010 = 100")) %>% translate(ind, gsub("yrittäjäkorjaus ", "yk ", var_labels_fi), simple = TRUE, parts = c(4,5)) %>% ggplot(aes(time, values, colour = ind)) + facet_wrap(~ vars, scales = "free_y") + geom_line() + geom_hline(aes(yintercept = yint), data = data.frame(yint = 0, vars = "Muutos, %")) + the_title_blank() + the_legend_bot() + guides(colour = guide_legend(nrow = 3)) # save_board_figs("Kuvio_5_1", height = fig_height, save_data = TRUE)
pdat_annual %>% # select(time, geo, nulc_aper) |> spread(geo, nulc_aper) |> tail() filter(geo == "FI") %>% select(geo, time, "Omassa valuutassa" = nulc_aper_rel_ecfin17, "Samassa valuutassa" = nulc_aper_eur_rel_ecfin17) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, mean_range)) %>% ungroup() %>% ggplot(aes(time, values, color = vars)) + geom_line() + the_title_blank(c("x", "l")) + geom_hline(yintercept = 100) + labs(y = glue("Indeksi, keskiarvo {min(mean_range)} - {max(mean_range)} = 100")) + the_legend_bot() save_board_figs("Kuvio_5_2", height = fig_height, save_data = TRUE)
Suhteessa 16 keskiseen verrokkimaahan:
r paste0(geo17, collapse = ", ")
pdat_annual %>% filter(geo == "FI") %>% mutate(exch_eur_ind_rel_ecfin17 = 1/ exch_eur_ind_rel_ecfin17) %>% select(geo, time, "Tuottavuus" = lp_ind_rel_ecfin17, "Palkansaajakorvaukset" = d1_per_ind_rel_ecfin17, "Valuuttakurssi" = exch_eur_ind_rel_ecfin17) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, mean_range)) %>% ungroup() %>% ggplot(aes(time, values, color = vars)) + geom_line() + the_title_blank(c("x", "l")) + geom_hline(yintercept = 100) + labs(y = glue("Indeksi, keskiarvo {min(mean_range)}–{max(mean_range)} = 100")) + the_legend_bot() save_board_figs("Kuvio_2_2", height = fig_height, save_data = TRUE) save_board_figs("Kuvio_2_2_en", plot = ggptt::translate_plot(last_plot(), fig_translation), height = fig_height, save_data = TRUE)
pdat_annual %>% filter(geo == "FI") %>% select(geo, time, "Vaihtosuhdekorjattu" = nulc_aper_eur_atot_rel_ecfin17, "Normaali" = nulc_aper_eur_rel_ecfin17) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, mean_range)) %>% ungroup() %>% ggplot(aes(time, values, color = vars)) + geom_line() + the_title_blank(c("x", "l")) + geom_hline(yintercept = 100) + labs(y = glue("Indeksi, keskiarvo {min(mean_range)} - {max(mean_range)} = 100")) + the_legend_bot()
data_main_annual %>% filter(geo == "FI") %>% select(geo, time, "Vaihtosuhdekorjattu" = nulc_aper_eur_atot_rel_ecfin17, "Normaali" = nulc_aper_eur_rel_ecfin17) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, 2010), change = 100 * (values / lag(values) -1)) %>% ungroup() %>% gather(type, values, values, change) %>% ggplot(aes(time, values, color = vars)) + facet_wrap(~type, scales = "free_y", labeller = labeller(type = c(change = "muutos, %", values = "indeksi, 2010 = 100"))) + geom_line()+ the_title_blank(c("x", "l", "y")) + geom_hline(aes(yintercept = yint), data = data.frame(yint = 0, type = "change")) + labs(y = glue("Indeksi, 2010 = 100")) + the_legend_bot() save_board_figs("Kuvio_5_4", height = fig_height, save_data = TRUE)
Eri määritelmillä
pdat_annual %>% filter(geo == "FI") %>% select(geo, time, "Nimellinen, vaihtosuhdekorjattu" = nulc_aper_eur_atot_rel_ecfin17, "Nimellinen, samassa valuutassa" = nulc_aper_eur_rel_ecfin17, "Reaalinen" = rulc_aper_rel_ecfin17, "Nimellinen, omassa valuutassa" = nulc_aper_rel_ecfin17) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, mean_range)) %>% ungroup() %>% ggplot(aes(time, values, color = vars)) + geom_line() + the_title_blank(c("x", "l")) + geom_hline(yintercept = 100) + labs(y = glue("Indeksi, keskiarvo {min(mean_range)}–{max(mean_range)} = 100")) + the_legend_bot() + guides(color = guide_legend(nrow = 2)) save_board_figs("Kuvio_2_1", height = fig_height, save_data = TRUE) save_board_figs("Kuvio_2_1_en", plot = ggptt::translate_plot(last_plot(), fig_translation), height = fig_height, save_data = TRUE)
Nimelliset yksikkötykustannukset
k <- data_main_annual %>% select(geo, time, nulc_aper_eur, nulc_aper) %>% group_by(time) %>% mutate(eur__bis_15 = weight_index2(nulc_aper_eur, geo, time, geos = eurostat_geos, weight_df = weights_bis_broad), eur__ecfin_15 = weight_index2(nulc_aper_eur, geo, time, geos = eurostat_geos, weight_df = weights_ecfin37), eur__imf_15 = weight_index2(nulc_aper_eur, geo, geos = eurostat_geos, time, weight_df = weights_imf), eur__ecfin_17 = weight_index2(nulc_aper_eur, geo, geos = geo17, time, weight_df = weights_ecfin37), own__bis_15 = weight_index2(nulc_aper, geo, time, geos = eurostat_geos, weight_df = weights_bis_broad), own__ecfin_15 = weight_index2(nulc_aper, geo, time, geos = eurostat_geos, weight_df = weights_ecfin37), own__imf_15 = weight_index2(nulc_aper, geo, geos = eurostat_geos, time, weight_df = weights_imf), own__ecfin_17 = weight_index2(nulc_aper, geo, geos = geo17, time, weight_df = weights_ecfin37) ) %>% select(-nulc_aper_eur, -nulc_aper) %>% filter(geo == "FI") %>% gather(vars, values, -geo , -time) k %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, mean_range)) %>% ungroup() %>% separate(vars, into = c("type", "vars"), sep = "__") %>% mutate( type = fct_recode(type, !!!c("Omassa valuutassa" = "own", "Samassa valuutassa" ="eur")), vars = toupper(gsub("_", " ", vars))) %>% ggplot(aes(time, values, colour = vars)) + geom_line() + facet_wrap(~ type) + scale_x_continuous(labels = no_century) + the_title_blank(c("x", "l")) + geom_hline(yintercept = 100) + labs(y = glue("Indeksi, keskiarvo {min(mean_range)} - {max(mean_range)} = 100")) + the_legend_bot() save_board_figs("Kuvio_5_3", height = fig_height, save_data = TRUE)
covid_geo <- c("FI", "SE", "DE", "DK", "IT", "AT", "ES") q_dat %>% select(time, geo, "Palkansaajakorvaukset" = d1_hw_ind, "Yksikkötyökustannukset" = nulc_hw_va_eur, "Työn tuottavuus" = lp_hw_ind) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, 2019)) %>% ungroup() %>% filter(geo %in% covid_geo, time >= "2019-01-01") %>% mutate(geo = fct_relevel(geo, covid_geo)) %>% mutate(high_geo = geo == "FI") %>% translate(geo, geo_fi) %>% ggplot(aes(time, values, color = geo, size = high_geo)) + facet_wrap(~ vars) + geom_line() + scale_size_manual(values = c(1, 2), guide = "none") + scale_x_date(date_labels = "%Y", date_breaks = "1 year") + the_title_blank(c("x", "l")) + labs(y = "indeksi, 2015 = 100") + the_legend_bot() save_board_figs("Kuvio_5_3", height = fig_height, save_data = TRUE) save_board_figs("Kuvio_5_3_en", plot = ggptt::translate_plot(last_plot(), fig_translation), height = fig_height, save_data = TRUE)
covid_geo <- c("FI", "SE", "DE", "DK", "IT", "AT", "ES") q_dat %>% select( time, geo, "Palkasaajakorvaukset" = d1_hw_ind, "Yksikkötyökustannukset" = nulc_hw_va_eur, "Työn tuottavuus" = lp_hw_ind, "BKT" = gdp_ind, "Työllisyys" = emp_ind, "Työtunnit" = EMP_DC__THS_HW ) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, 2019)) %>% ungroup() %>% filter(geo %in% covid_geo, time >= "2019-01-01") %>% mutate(geo = fct_relevel(geo, covid_geo)) %>% mutate(high_geo = geo == "FI") %>% translate(geo, geo_fi) %>% ggplot(aes(time, values, color = geo, size = high_geo)) + facet_wrap(~ vars) + geom_line() + scale_size_manual(values = c(1, 2), guide = "none") + the_title_blank(c("x", "l")) + labs(y = "indeksi, 2019 = 100") + the_legend_bot()
q_dat %>% select(time, geo, EMP_DC__THS_HW) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, 2019)) %>% ungroup() %>% filter(geo %in% covid_geo, time >= "2019-01-01") %>% mutate(geo = fct_relevel(geo, covid_geo)) %>% mutate(high_geo = geo == "FI") %>% translate(geo, geo_fi) %>% ggplot(aes(time, values, color = geo, size = high_geo)) + facet_wrap(~ vars) + geom_line() + scale_size_manual(values = c(1, 2), guide = "none") + the_title_blank(c("x", "l")) + labs(y = "indeksi, 2019 = 100") + the_legend_bot()
q_dat %>% select(time, geo, "Palkasaajakorvaukset" = d1_hw_ind, "Yksikkötyökustannukset" = nulc_hw_va_eur, "Työn tuottavuus" = lp_hw_ind) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, 2015)) %>% ungroup() %>% filter(time >= "2015-01-01") %>% mutate(geo = fct_relevel(geo, covid_geo)) %>% mutate(high_geo = geo == "FI") %>% translate(geo, geo_fi) %>% ggplot(aes(time, values, color = geo, size = high_geo)) + facet_wrap(~ vars) + geom_line() + scale_size_manual(values = c(1, 2), guide = "none") + the_title_blank(c("x", "l")) + labs(y = "indeksi, 2015 = 100") + the_legend_bot()
Kansantalouden tilinpidossa ja Työvoimakustannusindeksissä (lc_lci_r2_q)
covid_geo <- c("FI", "SE", "DE", "DK", "IT", "AT", "ES") q_dat %>% select(time, geo, "Kansantalouden tilinpito" = d1_hw_ind, "Työvoimakustannusindeksi" = d1net_hw_ind) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, 2015)) %>% ungroup() %>% filter(geo %in% covid_geo, time >= "2015-01-01") %>% mutate(geo = fct_relevel(geo, covid_geo)) %>% mutate(high_geo = geo == "FI") %>% translate(geo, geo_fi) %>% ggplot(aes(time, values, color = vars)) + facet_wrap(~ geo) + geom_line() + scale_size_manual(values = c(1, 2), guide = "none") + the_title_blank(c("x", "l")) + labs(y = "indeksi, 2015 = 100") + the_legend_bot()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.