knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 6, fig.width = 8, fig.path = "Report/", echo = FALSE, message = FALSE, warning = FALSE ) # library(ficomp) devtools::load_all() library(dplyr) library(forcats) library(ggplot2) library(tidyr) library(ggptt) set_proj_theme() data(ulc_oecd_dat, q_dat, a_dat, naq_eurostat_dat, eo_q_dat) base_year <- 2010 base_years <- 2000:2018 geos <- c(Finland = "FI", Sweden = "SE", Germany = "DE", France = "FR") start_time <- "1996-01-01" geo_trans <- geo_fi h_geos <- c("FI", "SE", "DE", "US")
Neljännesvuositietoja on kolme erilaista tietokantaa:
tibble(code = levels(naq_eurostat_dat$na_item), name = label_eurostat(levels(naq_eurostat_dat$na_item), "na_item"))
OECD ULC tiedoissa olevat maat: r levels(ulc_oecd_dat$geo)
.
Maiden lukumäärä r length(levels(ulc_oecd_dat$geo))
.
Muuttujat: r levels(ulc_oecd_dat$na_item)
ulc_oecd_dat %>% filter(na_item == "NULC_APER") %>% mutate(h_geo = fct_other(geo, keep = h_geos,other_level = "muut"), h_geo = fct_relevel(h_geo, h_geos), geo = fct_relevel(geo, rev(h_geos), after = Inf), size = !(geo %in% h_geo)) %>% translate(h_geo, geo_trans) %>% ggplot(aes(time, values, group = geo, colour = h_geo, size = size)) + geom_line() + scale_size_manual(values = c(2,1), guide = "none") + scale_colour_manual(values = geo_col(length(h_geos) + 1)) + the_title_blank() # library(ggiraph) # # ggi <- last_plot() + geom_line_interactive(aes(tooltip = geo)) # girafe(print(ggi))
Tiedot alkavat pääosin vuodesta 1995. Aloittamalla vuodesta 1996 saadaan muutama muu maa mukaan. Tietojen saatavuuden ja vertailtavuuden perusteella mukaan on otettu seuraavat maat.
ulc_oecd_dat %>% filter(na_item == "NULC_APER") %>% drop_na(values) %>% group_by(geo, na_item) %>% mutate(tmin = min(time), tmax = max(time)) %>% ungroup() %>% mutate(selected = geo %in% c(eurostat_geos, oecd_geos_ulcq)) %>% translate(geo, geo_trans) %>% ggplot(aes(geo, ymin = tmin, ymax = tmax, colour = selected)) + geom_linerange(size = 2) + coord_flip() + geom_hline(yintercept = as.numeric(as.Date("1996-01-01"))) + scale_y_date(breaks = as.Date(c("1960-01-01", "1980-01-01", "1996-01-01", "2000-01-01", "2020-01-01")), date_labels = "%Y") + scale_colour_manual(values = rev(geo_col(2)), guide = "none") + the_title_blank("y") save_fig("2_ulc_oecd_selected_geo", height = 5.8)
Indeksi ja suhteellinen indeksi IMF painoilla. y-akseli on katkaistu.
q_dat_oecd_ulc %>% # filter(geo != "JP") %>% select(geo, time, nulc_aper, nulc_aper_rel_imf) %>% gather(vars, values, nulc_aper, nulc_aper_rel_imf) %>% mutate(h_geo = fct_other(geo, keep = h_geos,other_level = "muut"), h_geo = fct_relevel(h_geo, h_geos), geo = fct_relevel(geo, rev(h_geos), after = Inf), size = !(geo %in% h_geo)) %>% translate(h_geo, geo_trans) %>% translate(vars, c(nulc_aper = "Indeksi", nulc_aper_rel_imf = "Suhteellinen indeksi")) %>% ggplot(aes(time, values, group = geo, colour = h_geo, size = size)) + facet_wrap(~ vars) + geom_line() + scale_size_manual(values = c(2,1), guide = "none") + scale_colour_manual(values = geo_col(length(h_geos) + 1)) + the_title_blank(c("x", "l")) + scale_y_continuous(limits = c(70,130), expand = expansion(mult = 0, add = 0)) + labs(y = "indeksi, 2010 = 100") save_fig("3_ulc_oecd")
Alkaa 1991, mutta neljännesvuositieodoissa osasta maista ei tietoja. c("NO", "DK", "NZ", "ES")
eo_q_dat_large %>% select(geo, time, values = nulc) %>% group_by(geo) %>% # coaleasce and na_if to set same min and ma for countries with all missing mutate(tmin = coalesce(na_if(min(time[!is.na(values)]), Inf), as.Date("1996-01-01")), tmax = coalesce(na_if(max(time[!is.na(values)]), -Inf), as.Date("1996-01-01"))) %>% ungroup() %>% mutate(selected = geo %in% c(eurostat_geos, oecd_geos_ulcq)) %>% translate(geo, geo_trans) %>% ggplot(aes(geo, ymin = tmin, ymax = tmax, colour = selected)) + geom_linerange(size = 2, colour = geo_col(2)[1]) + coord_flip() + geom_hline(yintercept = as.numeric(as.Date("1991-01-01"))) + scale_y_date(breaks = as.Date(c("1960-01-01", "1980-01-01", "1991-01-01", "2000-01-01", "2020-01-01")), date_labels = "%Y") + scale_colour_manual(values = rev(geo_col(2)), guide = "none") + the_title_blank("y") save_fig("4_OECD_eo_geos")
Yhdistelmä Eurostatin ja OECD:n Quarterly National Accounts datasta
q_dat %>% select(geo, time, values = nulc_aper) %>% group_by(geo) %>% mutate(tmin = min(time[!is.na(values)]), tmax = max(time[!is.na(values)])) %>% ungroup() %>% mutate(selected = geo %in% c(eurostat_geos, oecd_geos_ulcq)) %>% translate(geo, geo_trans) %>% ggplot(aes(geo, ymin = tmin, ymax = tmax, colour = selected)) + geom_linerange(size = 2, colour = geo_col(2)[1]) + coord_flip() + geom_hline(yintercept = as.numeric(as.Date("1996-01-01"))) + scale_y_date(breaks = as.Date(c("1996-01-01", "2000-01-01", "2020-01-01")), date_labels = "%Y") + scale_colour_manual(values = rev(geo_col(2)), guide = "none") + the_title_blank("y") save_fig("5_Eurostat_OECD_geos")
data_quartely_est %>% select(geo, time, values = nulc_aper) %>% group_by(geo) %>% mutate(tmin = min(time[!is.na(values)]), tmax = max(time[!is.na(values)])) %>% ungroup() %>% mutate(selected = geo %in% c(eurostat_geos, oecd_geos_ulcq)) %>% translate(geo, geo_trans) %>% ggplot(aes(geo, ymin = tmin, ymax = tmax, colour = selected)) + geom_linerange(size = 2, colour = geo_col(2)[1]) + coord_flip() + geom_hline(yintercept = as.numeric(as.Date("1996-01-01"))) + scale_y_date(breaks = as.Date(c("1996-01-01", "2000-01-01", "2020-01-01")), date_labels = "%Y") + scale_colour_manual(values = rev(geo_col(2)), guide = "none") + the_title_blank("y")
q_dat %>% # filter(geo != "JP") %>% select(geo, time, nulc_aper, nulc_aper_rel_imf) %>% gather(vars, values, nulc_aper, nulc_aper_rel_imf) %>% mutate(h_geo = fct_other(geo, keep = h_geos,other_level = "muut"), h_geo = fct_relevel(h_geo, h_geos), geo = fct_relevel(geo, rev(h_geos), after = Inf), size = !(geo %in% h_geo)) %>% translate(h_geo, geo_trans) %>% translate(vars, c(nulc_aper = "Indeksi", nulc_aper_rel_imf = "Suhteellinen indeksi")) %>% ggplot(aes(time, values, group = geo, colour = h_geo, size = size)) + facet_wrap(~ vars) + geom_line() + scale_size_manual(values = c(2,1), guide = "none") + scale_colour_manual(values = geo_col(length(h_geos) + 1)) + the_title_blank(c("x", "l")) + scale_y_continuous(limits = c(70,130), expand = expansion(mult = 0, add = 0)) + labs(y = "indeksi, 2010 = 100") save_fig("6_nulc_q_dat")
Economic outlook antaa alkupäässä ja lopussa hieman erilaisia arvoja.
max_time_q <- max(q_dat$time) bind_rows("Eurostat ja OECD QNA" = q_dat, "OECD ULC" = q_dat_oecd_ulc, "OECD EO" = rename(eo_q_dat, nulc_aper = nulc, nulc_aper_rel_imf = nulc_rel_imf), .id = "source") %>% filter(geo == "FI", # time >= start_time, time <= max_time_q) %>% select(source, time, nulc_aper, nulc_aper_rel_imf) %>% gather(vars, values, nulc_aper, nulc_aper_rel_imf) %>% # mutate(h_geo = fct_other(geo, keep = h_geos,other_level = "muut"), # h_geo = fct_relevel(h_geo, h_geos), # geo = fct_relevel(geo, rev(h_geos), after = Inf), # size = !(geo %in% h_geo)) %>% # translate(h_geo, geo_trans) %>% translate(vars, c(nulc_aper = "Indeksi", nulc_aper_rel_imf = "Suhteellinen indeksi")) %>% ggplot(aes(time, values, colour = source)) + facet_wrap(~ vars) + geom_line() + # scale_size_manual(values = c(2,1), guide = "none") + # scale_colour_manual(values = geo_col(length(h_geos) + 1)) + the_title_blank(c("x", "l")) + # scale_y_continuous(limits = c(70,130), expand = expansion(mult = 0, add = 0)) + labs(y = "indeksi, 2010 = 100") + the_legend_bot() save_fig("7_nulc_comparison")
OECD EO:n ero tulee siitä, että siinä ei ole laskettu yrittäjäkorjausta.
bind_rows("Eurostat ja OECD QNA" = q_dat, "OECD EO" = eo_q_dat, .id = "source") %>% filter(geo == "FI", time <= max_time_q) %>% select(source, time, nulc_aper, nulc) %>% gather(vars, values, -source, - time) %>% filter(!is.na(values)) %>% unite(vars, vars, source, sep = ", ") %>% ggplot(aes(time, values, colour = vars)) + geom_line() + the_title_blank(c("x", "l")) + labs(y = "indeksi, 2010 = 100") + guides(color = guide_legend(nrow = 2)) + the_legend_bot()
# To check bind_rows("Eurostat ja EO" = q_dat, "OECD ULC" = q_dat_oecd_ulc, .id = "source") %>% select(geo, source, time, nulc_aper, nulc_aper_rel_imf) %>% gather(vars, values, nulc_aper, nulc_aper_rel_imf) %>% # mutate(h_geo = fct_other(geo, keep = h_geos,other_level = "muut"), # h_geo = fct_relevel(h_geo, h_geos), # geo = fct_relevel(geo, rev(h_geos), after = Inf), # size = !(geo %in% h_geo)) %>% # translate(h_geo, geo_trans) %>% mutate(source = fct_rev(as_factor(source))) %>% translate(vars, c(nulc_aper = "Indeksi", nulc_aper_rel_imf = "Suhteellinen indeksi")) %>% ggplot(aes(time, values, colour = source)) + facet_grid(geo ~ vars) + geom_line() + # scale_size_manual(values = c(2,1), guide = "none") + # scale_colour_manual(values = geo_col(length(h_geos) + 1)) + the_title_blank(c("x", "l")) + # scale_y_continuous(limits = c(70,130), expand = expansion(mult = 0, add = 0)) + labs(y = "indeksi, 2010 = 100")
Tässä vain eurostat maat
data_main_groups_q %>% select(geo, nace0, time, nulc_aper = nulc_aper_va, nulc_aper_rel_imf = nulc_aper_va_rel_imf) %>% gather(vars, values, nulc_aper, nulc_aper_rel_imf) %>% mutate(h_geo = fct_other(geo, keep = h_geos,other_level = "muut"), h_geo = fct_relevel(h_geo, h_geos), geo = fct_relevel(geo, rev(h_geos), after = Inf), size = !(geo %in% h_geo)) %>% translate(h_geo, geo_trans) %>% translate(vars, c(nulc_aper = "Indeksi", nulc_aper_rel_imf = "Suhteellinen indeksi")) %>% translate(nace0, c(total = "Koko talous", manu = "Teollisuus")) %>% ggplot(aes(time, values, group = geo, colour = h_geo, size = size)) + facet_grid(nace0 ~ vars) + geom_line() + scale_size_manual(values = c(2,1), guide = "none") + scale_colour_manual(values = geo_col(length(h_geos))) + the_title_blank(c("x", "l")) + scale_y_continuous(limits = c(70,130), expand = expansion(mult = 0, add = 0)) + labs(y = "indeksi, 2010 = 100") save_fig("8_nulc_q_total_manu")
bind_rows(annual = mutate(data_main_groups_a, time = as.Date(paste0(time, "-07-01"))), quarterly = data_main_groups_q, ilc = mutate(data_ilc, time = as.Date(paste0(time, "-07-01"))), .id = "source") %>% select(geo, time, nace0, source, nulc_va_eur) %>% mutate(nace0 = recode(nace0, manu_ex26 = "manu_ex26_27")) %>% filter(nace0 == "manu") %>% group_by(source) %>% weight_at(geo, time, at = c("nulc_va_eur"), weight_df = weights_ecfin42) %>% ungroup() %>% gather(vars, values, -geo, -time, -source,-nace0) %>% filter(geo == "FI") %>% ggplot(aes(time, values, color = source)) + geom_line() + facet_wrap(~ vars)
bind_rows(annual = mutate(data_main_groups_a, time = as.Date(paste0(time, "-07-01"))), quarterly = data_main_groups_q, ilc = mutate(data_ilc, time = as.Date(paste0(time, "-07-01"))), .id = "source") %>% select(geo, time, nace0, source, nulc_va, lp_ind, d1_per_ind) %>% filter(nace0 == "manu") %>% gather(vars, values, -geo, -time, -source,-nace0) %>% filter(geo == "FI") %>% ggplot(aes(time, values, color = source)) + geom_line() + facet_wrap(~ vars)
data_quartely_manu_est %>% select(geo, time, nace0, nulc_va_eur, nulc_va_eur_long, nulc_va_eur_rel_ecfin21, nulc_va_eur_long_rel_ecfin21) %>% filter(nace0 == "manu") %>% gather(vars, values, -geo, -time, -nace0) %>% filter(geo == "FI") %>% ggplot(aes(time, values, color = vars)) + geom_line()
Different definations for unit labour cost: Output: GDP or value added Relation to hours worked or persons (relevant if adjusted for self-employed or for decomposition)
# lc_dat_nace <- # naq_eurostat_dat %>% # unite(vars, na_item, unit) %>% # # filter(vars %in% c("D1_CP_MNAC", "B1G_CLV10_MNAC")) %>% # spread(vars, values) %>% # group_by(geo, nace_r2) %>% # mutate( # # nominal unit labour cost # nulc_va = ind_ulc(D1_CP_MNAC, B1G_CLV10_MNAC, time = time, baseyear = base_year), # nulc = ind_ulc(D1_CP_MNAC, B1GQ_CLV10_MNAC, time = time, baseyear = base_year), # # nominal unit labour cost, adjusted to take account emploees/emplyed share # nulc_hw_va = ind_ulc(D1_CP_MNAC / SAL_DC_THS_HW, B1G_CLV10_MNAC / EMP_DC_THS_HW, time = time, baseyear = base_year), # nulc_hw = ind_ulc(D1_CP_MNAC / SAL_DC_THS_HW, B1GQ_CLV10_MNAC / EMP_DC_THS_HW, time = time, baseyear = base_year), # nulc_hw_eur = ind_ulc(D1_CP_MEUR / SAL_DC_THS_HW, B1GQ_CLV10_MNAC / EMP_DC_THS_HW, time = time, baseyear = base_year), # nulc_per_va = ind_ulc(D1_CP_MNAC / SAL_DC_THS_PER, B1G_CLV10_MNAC / EMP_DC_THS_PER, time = time, baseyear = base_year), # nulc_per = ind_ulc(D1_CP_MNAC / SAL_DC_THS_PER, B1GQ_CLV10_MNAC / EMP_DC_THS_PER, time = time, baseyear = base_year)) %>% # ungroup() # # lc_dat <- lc_dat_nace %>% # filter(nace_r2 == "TOTAL") q_dat %>% filter(geo %in% h_geos, time >= start_time) %>% select(geo, time, nulc, nulc_va, nulc_hw, nulc_hw_va, nulc_aper, nulc_aper_va) %>% gather(ind, values, -geo, -time) %>% ggplot(aes(time, values, colour = geo)) + geom_line() + facet_wrap(~ ind) + the_title_blank()
On short term a NULC indicator selection does not matter. On longer term differences acculumate.
q_dat %>% filter(geo == "FI", time >= start_time) %>% select(geo, time, nulc, nulc_va, nulc_hw, nulc_hw_va, nulc_aper, nulc_aper_va) %>% gather(ind, values, -geo, -time) %>% group_by(geo, ind) %>% mutate(change = 100 * (values / lag(values, 4, order_by = time) - 1)) %>% ungroup() %>% gather(vars, values, values, change) %>% translate(vars, c(change = "Muutos, %", values = "Taso, indeksi 2010 = 100")) %>% translate(ind, var_labels_fi, simple = TRUE, parts = c(4,5)) %>% ggplot(aes(time, values, colour = ind)) + facet_wrap(~ vars, scales = "free_y") + geom_line() + geom_hline(aes(yintercept = yint), data = data.frame(yint = 0, vars = "Muutos, %")) + the_title_blank() + the_legend_bot() + guides(colour = guide_legend(nrow = 3)) save_fig("9_nulc_ind_comparison")
fast_geos <- data_quartely_est %>% filter(time == max(time) & !is.na(nulc_aper_eur_long)) %>% pull(geo) dat_eff <- ert_eff_ic_q %>% select(geo, time, exch_rt, values) %>% spread(exch_rt, values) data_quartely_est_extra <- data_quartely_est %>% left_join(dat_eff, by = c("geo", "time")) %>% # left_join(data_quartely_manu_est, by = c("geo", "time"), suffix = c("", "_manu")) %>% group_by(time) %>% mutate(nulc_aper_eur_long_rel_ecfin14_extra = weight_index2(nulc_aper_eur_long, geo, time, geos = setdiff(eurostat_geos, c("NL", "EL", "IE")), weight_df = weights_ecfin37)) %>% mutate(nulc_aper_eur_long_rel_fast = weight_index2(nulc_aper_eur_long, geo, time, geos = fast_geos, weight_df = weights_ecfin37)) %>% mutate(rulc_aper_long_rel_fast = weight_index2(rulc_aper_long, geo, time, geos = fast_geos, weight_df = weights_ecfin37)) %>% ungroup() data_quartely_est_extra %>% select(geo, time, # "14 maata" = nulc_aper_eur_long_rel_ecfin14_extra, "20 maata" = nulc_aper_eur_long_rel_ecfin20, "10 maata" = nulc_aper_eur_long_rel_fast, # "EU komission" = REER_IC37_ULCT, "reaalinen, 10 maata" = rulc_aper_long_rel_fast, "reaalinen, 20 maata" = rulc_aper_long_rel_ecfin20,) %>% filter(geo == "FI", time >= start_time) %>% gather(ind, values, -geo, -time) %>% mutate(ind = fct_rev(ind)) %>% mutate(time = halfq_shift(time)) %>% ggplot(aes(time, values, colour = ind)) + geom_line() + geom_hline(yintercept = 100) + the_title_blank(c("x", "l")) + the_legend_bot() + guides(colour = guide_legend()) + labs(title = "Suomen suhteelliset yksikkötyökustannukset samassa valuutassa", subtitle = "eli efektiivinen valuuttakurssi yksikkötyökustannuksilla. Vertailussa komission indikaattori ja aidosta neljännesvuositiededosta lasketut 20 ja 10 maan tietoihin perustuvat indikaattorit", y = "indeksi, 2010 = 100", caption = "Lähde: ECFIN, AMECO, Eurostat, OECD, PTT") # data_quartely_est %>% # select(geo, time, nulc_aper_eur_long) %>% # spread(geo, nulc_aper_eur_long) %>% # View() ggsave_twitter("nulc.png") data_quartely_est_fi <- data_quartely_est %>% filter(geo == "FI") data_quartely_est_extra_fi <- data_quartely_est_extra %>% filter(geo == "FI") library(MacrobondAPI) mb_nulc_aper_eur_long_rel_fast <- MacrobondAPI::CreateTimeSeriesObject(name = "ih:mb:com:nulcefast", description = "Suomen nimelliset suhteelliset yksikkötyökustannukset samassa valuutassa, 10 maata", region = "fi", category = "National accounts", frequency = "Quarterly", startDateOrDates = as.Date(data_quartely_est_extra_fi$time), values = data_quartely_est_extra_fi$nulc_aper_eur_long_rel_fast ) mb_nulc_aper_eur_long_rel_ecfin14 <- MacrobondAPI::CreateTimeSeriesObject(name = "ih:mb:com:nulcecfin14", description = "Suomen nimelliset suhteelliset yksikkötyökustannukset samassa valuutassa, 14 maata", region = "fi", category = "National accounts", frequency = "Quarterly", startDateOrDates = as.Date(data_quartely_est_fi$time), values = data_quartely_est_fi$nulc_aper_eur_long_rel_ecfin14 ) mb_nulc_aper_eur_long_rel_ecfin20 <- MacrobondAPI::CreateTimeSeriesObject(name = "ih:mb:com:nulcecfin20", description = "Suomen nimelliset suhteelliset yksikkötyökustannukset samassa valuutassa, 20 maata", region = "fi", category = "National accounts", frequency = "Quarterly", startDateOrDates = data_quartely_est_fi$time[!is.na(data_quartely_est_fi$nulc_aper_eur_long_rel_ecfin20)], values = data_quartely_est_fi$nulc_aper_eur_long_rel_ecfin20[!is.na(data_quartely_est_fi$nulc_aper_eur_long_rel_ecfin20)] ) mb_rulc_aper_long_rel_fast <- MacrobondAPI::CreateTimeSeriesObject(name = "ih:mb:com:rulcfast", description = "Suomen reaaliset suhteelliset yksikkötyökustannukset, 10 maata", region = "fi", category = "National accounts", frequency = "Quarterly", startDateOrDates = data_quartely_est_extra_fi$time[!is.na(data_quartely_est_extra_fi$rulc_aper_long_rel_fast)], values = data_quartely_est_extra_fi$rulc_aper_long_rel_fast[!is.na(data_quartely_est_extra_fi$rulc_aper_long_rel_fast)] ) UploadOneOrMoreTimeSeries(list(mb_nulc_aper_eur_long_rel_fast, mb_nulc_aper_eur_long_rel_ecfin20, mb_rulc_aper_long_rel_fast))
q_dat %>% select(time, geo, "Palkasaajakorvaukset" = d1_hw_ind, "Yksikkötyökustannukset" = nulc_hw_va_eur, "Työn tuottavuus" = lp_hw_ind) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, 2015)) %>% ungroup() %>% filter(geo %in% c(geos, "NO", "DK", "NL", "IT", "ES"), time >= "2015-01-01") %>% ggplot(aes(time, values, color = geo)) + facet_wrap(~ vars) + geom_line() + labs(y = "indeksi, 2015, Q1 = 100")
q_dat %>% select(time, geo, d1_hw_ind) %>% gather(vars, values, -geo, -time) %>% group_by(geo, vars) %>% mutate(values = rebase(values, time, 2015)) %>% ungroup() %>% filter(geo %in% c(geos, "NO", "DK", "NL", "IT", "ES"), time >= "2015-01-01") %>% ggplot(aes(time, values, color = geo)) + facet_wrap(~ vars) + geom_line()
Samassa valuutassa volatiliteetti paljon suurempi.
q_dat %>% filter(geo %in% h_geos, time >= start_time) %>% select(geo, time, nulc, nulc_eur) %>% gather(ind, values, -geo, -time, factor_key = TRUE) %>% ggplot(aes(time, values, colour = geo)) + geom_line() + facet_wrap(~ ind) + the_title_blank()
Sama suhteellisina.
q_dat %>% filter(geo %in% h_geos, time >= start_time) %>% select(geo, time, nulc_rel_imf, nulc_eur_rel_imf) %>% gather(ind, values, -geo, -time, factor_key = TRUE) %>% ggplot(aes(time, values, colour = geo)) + geom_line() + facet_wrap(~ ind) + the_title_blank()
# Nominal unit labour cost comparison from different sources # NULC_APER_OECD = NULC_PER_ECB = nulc_per # = (D1_CP_MNAC / SAL_DC_THS_PER) / (B1GQ_CLV10_MNAC / EMP_DC_THS_PER) # # NULC_HW_ECB = nulc_hw # = (D1_CP_MNAC / SAL_DC_THS_HW) / (B1GQ_CLV10_MNAC / EMP_DC_THS_HW) ulc_oecd_with <- ulc_oecd_dat %>% select(- unit) %>% filter(na_item == "NULC_APER") %>% mutate(na_item = paste0(na_item, "_OECD")) %>% group_by(geo, na_item) %>% mutate(values = rebase(values, time, base_year)) %>% ungroup() %>% spread(na_item, values) ulc_eurostat_with <- ulc_eurostat_dat %>% filter(na_item %in% c("NULC_HW", "NULC_PER")) %>% select(time, geo, na_item, values) %>% mutate(na_item = paste0(na_item, "_eurostat")) %>% group_by(geo, na_item) %>% mutate(values = rebase(values, time, base_year)) %>% ungroup() %>% spread(na_item, values) ulc_ecb_with <- ulc_ecb_dat %>% filter(na_item %in% c("NULC_HW", "NULC_PER")) %>% select(time, geo, na_item, values) %>% mutate(na_item = paste0(na_item, "_ECB")) %>% group_by(geo, na_item) %>% mutate(values = rebase(values, time, base_year)) %>% ungroup() %>% spread(na_item, values) lc_with <- lc_dat %>% select(time, geo, nulc, nulc_va, nulc_hw, nulc_hw_va, nulc_per, nulc_per_va) %>% left_join(ulc_oecd_with, by = c("time", "geo")) %>% # left_join(ulc_eurostat_with, by = c("time", "geo")) %>% left_join(ulc_ecb_with, by = c("time", "geo")) # %>% filter(geo == "FI") %>% View() lc_with %>% gather(vars, values, - time, - geo) %>% mutate(vars = fct_relevel(vars, "NULC_APER", after = Inf)) %>% filter(geo == "FI") %>% ggplot(aes(time, values, colour = vars)) + geom_line()
Suomelle painoilla ei juuri väliä.
q_dat %>% filter(geo %in% h_geos) %>% select(geo, time, nulc_aper_rel15, nulc_aper_rel_bis, nulc_aper_rel_imf) %>% gather(vars, values, -geo, -time) %>% # mutate(h_geo = fct_other(geo, keep = h_geos,other_level = "muut"), # geo = fct_relevel(geo, h_geos, after = Inf)) %>% translate(geo, geo_fi) %>% translate(vars, c(nulc_aper_rel15 = "BIS, kiinteä 2015", nulc_aper_rel_bis = "BIS", nulc_aper_rel_imf = "IMF")) %>% ggplot(aes(time, values, colour = vars)) + geom_line() + facet_wrap(~ geo, scales = "free") + scale_size_manual(values = c(2,1)) + the_title_blank() save_fig("Q_weights")
q_dat %>% filter(geo %in% h_geos) %>% select(geo, time, nulc_aper_rel_imf, gdp_ind_rel_imf, exp_ind_rel_imf, XPERF) %>% mutate(nulc_aper_rel_imf = rebase(1/nulc_aper_rel_imf, time, base_year), XPERF = 100* XPERF) %>% gather(vars, values, -geo, -time) %>% # mutate(h_geo = fct_other(geo, keep = h_geos,other_level = "muut"), # geo = fct_relevel(geo, h_geos, after = Inf)) %>% translate(geo, geo_fi) %>% translate(vars, c(nulc_aper_rel_imf = "ULCy, käänteinen", gdp_ind_rel_imf = "BKT", exp_ind_rel_imf = "Vienti", XPERF = "Vientimenestys")) %>% ggplot(aes(time, values, colour = vars)) + geom_line() + facet_wrap(~ geo, scales = "free") + scale_size_manual(values = c(2,1)) + the_title_blank() save_fig("Q_ulc_gdp_comp")
data_quartely_est %>% filter(geo == "FI", time >= "1995-01-01") %>% select(geo, time, nulc_var = nulc_aper_long_rel_ecfin20, gdp_ind_long_rel_ecfin20, exp_ind_long_rel_ecfin20, XPERF) %>% mutate(nulc_var = rebase(1/(nulc_var), time, base_year), XPERF = rebase(XPERF, time, base_year)) %>% gather(vars, values, -geo, -time) %>% # mutate(h_geo = fct_other(geo, keep = h_geos,other_level = "muut"), # geo = fct_relevel(geo, h_geos, after = Inf)) %>% translate(geo, geo_fi) %>% # translate(vars, c(nulc_aper_rel_imf = "ULCy, käänteinen", gdp_ind_rel_imf = "BKT", # exp_ind_rel_imf = "Vienti", XPERF = "Vientimenestys")) %>% ggplot(aes(time, values, colour = vars)) + geom_line() + # facet_wrap(~ geo, scales = "free") + scale_size_manual(values = c(2,1)) + scale_y_continuous(sec.axis = sec_axis(~ . * -1)) + the_title_blank() + the_legend_bot() + guides(colour = guide_legend(nrow = 2)) save_board_figs("rel")
data_ameco_long %>% filter(geo == "FI") %>% filter(time >= "1995-01-01") %>% select(geo, time, nulc_var = nulc_aper_rel_ameco15, # rulc_var = rulc_aper_rel_ameco15, out_var = gdp_ind_rel_ameco15) %>% mutate(nulc_var = rebase(1/nulc_var, time, base_year)) %>% # mutate(rulc_var = rebase(1/rulc_var, time, base_year)) %>% # mutate(out_var = 100* (out_var / lag(out_var) -1) + 100) %>% gather(vars, values, -geo, -time) %>% # mutate(h_geo = fct_other(geo, keep = h_geos,other_level = "muut"), # geo = fct_relevel(geo, h_geos, after = Inf)) %>% translate(geo, geo_fi) %>% # translate(vars, c(nulc_aper_rel_imf = "ULCy, käänteinen", gdp_ind_rel_imf = "BKT", # exp_ind_rel_imf = "Vienti", XPERF = "Vientimenestys")) %>% ggplot(aes(time, values, colour = vars)) + geom_line() + facet_wrap(~ geo, scales = "free") + scale_size_manual(values = c(2,1)) + the_title_blank()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.