```{css, echo=FALSE} .title { font-weight: bold; }

h1 { font-size: 25px; font-weight: bold; } h2 { font-size: 23px; font-weight: bold; } h3 { font-size: 21px; } p.caption { color: #777; margin-top: 10px; } p code { white-space: inherit; } pre { word-break: normal; word-wrap: normal; } pre code { white-space: inherit; }

```r
knitr::opts_chunk$set(echo = TRUE, message=FALSE, warning=FALSE, echo = FALSE)
library(magrittr)
library(ggplot2)
library(patchwork)

df1_means <- params$results_summary_means
df1_medians <- params$results_summary_medians
df2 <- params$results_by_day

sex <- ifelse(params$sex == "male", "masculin", 
              ifelse(params$sex == "female", "féminin",
                     "non défini"))
position <- ifelse(params$position == "hip", "hanche", 
              ifelse(params$position == "wrist", "poignet",
                     ifelse(params$position == "thigh", "cuisse",
                            ifelse(params$position == "ankle", "cheville", "NA"))))

side <- ifelse(params$side == "right", "droit", 
              ifelse(params$side == "left", "gauche",
                     "non défini"))

axis_weartime <- ifelse(params$axis_weartime == "vertical axis", "l'axe vertical", 
              ifelse(params$axis_weartime == "vector magnitude", "le vecteur magnitude",
                     "non défini"))

axis_mvpa <- ifelse(params$axis_mvpa == "vertical axis", "axe vertical", 
              ifelse(params$axis_mvpa == "vector magnitude", "vecteur magnitude",
                     "non défini"))

axis_mvpa_graph <- ifelse(params$axis_mvpa == "vertical axis", "axis1", 
              ifelse(params$axis_mvpa == "vector magnitude", "vm",
                     "na"))

height_factor1 = nlevels(as.factor(params$df_with_computed_metrics$date)) * 0.75
height_factor1 <- ifelse(height_factor1 <= 6, nlevels(as.factor(params$df_with_computed_metrics$date)) * 0.9, height_factor1)
height_factor2 = params$results_summary_means$valid_days * 0.75
height_factor2 <- ifelse(height_factor2 <= 6, nlevels(as.factor(params$df_with_computed_metrics$date)) * 0.9, height_factor2)
height_factor3 = nlevels(as.factor(params$df_with_computed_metrics$date)) * 1.5

options("scipen"=100, "digits"=4)

Informations


Patient : r params$patient_surname r params$patient_name | Date : r Sys.Date() | Évaluateur : r params$assessor_surname r params$assessor_name

Age : r params$age ans | Sexe : r sex | Masse : r params$weight kg | Période de mesure : r format(params$start_date, "%d/%m/%Y %H:%M:%S") au r format(params$end_date, "%d/%m/%Y %H:%M:%S") | Estimation du métabolisme de base : r format(round(params$bmr_kcal_d, 2), nsmall = 2) kcal/jour (Estimation à partir des équations de Henry [2005, doi: 10.1079/PHN2005801])

Appareil : r params$device | Position : r position | Côté : r side | Fréquence d'échantillonnage : r params$sampling_rate Hz | Filtre : r params$filter

'Epoch' : r params$epoch s | Temps de non-port : Basé sur r axis_weartime, intervalle de r params$frame_size min avec zéro count pour la détection du temps de non-port, intervalle de r params$allowanceFrame_size min avec counts différents de 0 autorisé durant une période de non-port, intervalle de r params$streamFrame_size min avec zéro count autour de la période d'activité détectée pour confirmer le non-port | Équation de prédiction des METs : r params$equation_mets | Axe utilisé pour catégoriser l'intensité d'activité physique : r axis_mvpa | Valeurs seuils : <r params$sed_cutpoint counts/min pour SED, $\geqslant$ r params$mpa_cutpoint counts/min pour MPA, $\geqslant$ r params$vpa_cutpoint counts/min pour VPA

Période journalière considérée pour compter le temps de port : de r params$start_day_analysis à r params$end_day_analysis

Nombre minimum d'heures avec temps de port pour valider un jour : r params$minimum_wear_time_for_analysis heures

Abréviations : SED = sédentaire, LPA = activité physique légère, MPA = activité physique modérée, VPA = activité physique vigoureuse, MVPA = activité physique modérée à vigoureuse, NAP = niveau d'activité physique

Résultats


Indicateurs de volume d'activité

Distribution temporelle de l'intensité

g <- plot_data_with_intensity(
  data = params$df_with_computed_metrics, 
  metric = axis_mvpa_graph,
  valid_wear_time_start = params$start_day_analysis,
  valid_wear_time_end = params$end_day_analysis
  )
g + labs(x = "Temps (hh:mm)", color = "Durée de période (min)", fill = "Durée de période (min)")

if (params$rendered_by_shiny)
  shiny::setProgress(0.25)  # set progress to 25%

Résultats par jour : Vue tabulaire

reactable::reactable(params$results_by_day %>% dplyr::select(date:total_steps) %>%
                       dplyr::rename(
                        Date = date,
                        "Temps de port (min)"                  = "wear_time",
                        "Total counts Axe 1 "                  = "total_counts_axis1",
                        "Total counts VM"                      = "total_counts_vm",
                        "Moyenne Axe 1 (counts/min)"           = "axis1_per_min",
                        "Moyenne VM (counts/min)"              = "vm_per_min",
                        "Temps SED (min)"                      = "minutes_SED", 
                        "Temps LPA (min)"                      = "minutes_LPA", 
                        "Temps MPA (min)"                      = "minutes_MPA",
                        "Temps VPA (min)"                      = "minutes_VPA",
                        "Temps MVPA (min)"                     = "minutes_MVPA",
                        "Proportion du temps de port SED (%)"  = "percent_SED",
                        "Proportion du temps de port LPA (%)"  = "percent_LPA",
                        "Proportion du temps de port MPA (%)"  = "percent_MPA",
                        "Proportion du temps de port VPA (%)"  = "percent_VPA",
                        "Proportion du temps de port MVPA (%)" = "percent_MVPA",
                        "Ratio MVPA / SED"                     = "ratio_mvpa_sed",
                        "Total MET-hr"                         = "mets_hours_mvpa", 
                        "Total kcal"                           = "total_kcal",
                        "NAP"                                  = "pal",
                        "Total pas"                            = "total_steps"
                       ),  
                striped = TRUE,
                list(
                     "Date" = reactable::colDef(
                       style = list(position = "sticky", left = 0, background = "#CCCCCC", zIndex = 1),
                       headerStyle = list(position = "sticky", left = 0,  background = "#fff", zIndex = 1)
                     ),
                     "Temps de port (min)"                   = reactable::colDef(minWidth = 160),
                     "Total counts Axe 1 "                   = reactable::colDef(minWidth = 160),
                     "Total counts VM"                       = reactable::colDef(minWidth = 160),
                     "Moyenne Axe 1 (counts/min)"            = reactable::colDef(minWidth = 160),
                     "Moyenne VM (counts/min)"               = reactable::colDef(minWidth = 160),
                     "Temps SED (min)"                       = reactable::colDef(minWidth = 160),
                     "Temps LPA (min)"                       = reactable::colDef(minWidth = 160),
                     "Temps MPA (min)"                       = reactable::colDef(minWidth = 160),
                     "Temps VPA (min)"                       = reactable::colDef(minWidth = 160),
                     "Temps MVPA (min)"                      = reactable::colDef(minWidth = 160),
                     "Proportion du temps de port SED (%)"   = reactable::colDef(minWidth = 160),
                     "Proportion du temps de port LPA (%)"   = reactable::colDef(minWidth = 160),
                     "Proportion du temps de port MPA (%)"   = reactable::colDef(minWidth = 160),
                     "Proportion du temps de port VPA (%)"   = reactable::colDef(minWidth = 160),
                     "Proportion du temps de port MVPA (%)"  = reactable::colDef(minWidth = 160),
                     "Ratio MVPA / SED"                      = reactable::colDef(minWidth = 160),
                     "Total MET-hr"                          = reactable::colDef(minWidth = 160),
                     "Total kcal"                            = reactable::colDef(minWidth = 160),
                     "NAP"                                   = reactable::colDef(minWidth = 160),
                     "Total pas"                             = reactable::colDef(minWidth = 160)
                     )
                )

Résultats par jour : Vue graphique

create_fig_res_by_day(
  df2, 
  params$minimum_wear_time_for_analysis, 
  params$start_day_analysis, 
  params$end_day_analysis, 
  language = "fr",
  metrics = "volume"
  ) + theme(plot.margin = margin(1, 1, 1, 1, "cm"))

Moyennes | Médianes calculées à partir des jours valides

reactable::reactable(
  tibble::tibble(
        Indicateur = c(
          "Nombre de jours valides",  
          "Temps de port (min)",                 
          "Total counts Axe 1 ",                 
          "Total counts VM",                     
          "Moyenne Axe 1 (counts/min)",          
          "Moyenne VM (counts/min)",             
          "Temps SED (min)",                     
          "Temps LPA (min)",                     
          "Temps MPA (min)",                     
          "Temps VPA (min)",                     
          "Temps MVPA (min)",                    
          "Proportion du temps de port SED (%)",
          "Proportion du temps de port LPA (%)",
          "Proportion du temps de port MPA (%)",
          "Proportion du temps de port VPA (%)",
          "Proportion du temps de port MVPA (%)",
          "Ratio MVPA / SED",                    
          "Total MET-hr",                        
          "Total kcal",                          
          "NAP",                                
          "Total pas"                           
        ),

        "Moyenne | m\xc3\xa9diane journali\xc3\xa8re obtenue \xc3\xa0 partir des jours valides" = c(

          # Nombre de jours valides
          paste0(df1_means[["valid_days"]]),

          # Temps de port
          paste0(format(round(df1_means[["wear_time"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_means[["wear_time"]]), ") | ",  
                 format(round(df1_medians[["wear_time"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_medians[["wear_time"]]), ")"),  

          # Total counts Axis 1
            paste0(format(round(df1_means[["total_counts_axis1"]], 1), nsmall = 1), " | ",
                   format(round(df1_medians[["total_counts_axis1"]], 1), nsmall = 1)), 

          # Total counts VM
            paste0(format(round(df1_means[["total_counts_vm"]], 1), nsmall = 1), " | ",
                   format(round(df1_medians[["total_counts_vm"]], 1), nsmall = 1)), 

          # Axis 1 par min
            paste0(format(round(df1_means[["axis1_per_min"]], 1), nsmall = 1), " | ",
                   format(round(df1_medians[["axis1_per_min"]], 1), nsmall = 1)), 

          # VM par min
            paste0(format(round(df1_means[["vm_per_min"]], 1), nsmall = 1), " | ",
                   format(round(df1_medians[["vm_per_min"]], 1), nsmall = 1)), 

          # Minutes SED
          paste0(format(round(df1_means[["minutes_SED"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_means[["minutes_SED"]]), ") | ",  
                 format(round(df1_medians[["minutes_SED"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_medians[["minutes_SED"]]), ")"), 

          # Minutes LPA
          paste0(format(round(df1_means[["minutes_LPA"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_means[["minutes_LPA"]]), ") | ",  
                 format(round(df1_medians[["minutes_LPA"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_medians[["minutes_LPA"]]), ")"),

          # Minutes MPA
          paste0(format(round(df1_means[["minutes_MPA"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_means[["minutes_MPA"]]), ") | ",  
                 format(round(df1_medians[["minutes_MPA"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_medians[["minutes_MPA"]]), ")"),

          # Minutes VPA
          paste0(format(round(df1_means[["minutes_VPA"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_means[["minutes_VPA"]]), ") | ",  
                 format(round(df1_medians[["minutes_VPA"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_medians[["minutes_VPA"]]), ")"),

          # Minutes MVPA
          paste0(format(round(df1_means[["minutes_MVPA"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_means[["minutes_MVPA"]]), ") | ",
                 format(round(df1_medians[["minutes_MVPA"]], 1), nsmall = 1), " (", hms::hms(minutes = df1_medians[["minutes_MVPA"]]), ")"), 

          # % SED
          paste0(format(round(df1_means[["percent_SED"]], 1), nsmall = 1), " | ", format(round(df1_medians[["percent_SED"]], 1), nsmall = 1)),

          # % LPA
          paste0(format(round(df1_means[["percent_LPA"]], 1), nsmall = 1), " | ", format(round(df1_medians[["percent_LPA"]], 1), nsmall = 1)),  

          # % MPA
          paste0(format(round(df1_means[["percent_MPA"]], 1), nsmall = 1), " | ", format(round(df1_medians[["percent_MPA"]], 1), nsmall = 1)), 

          # % VPA
          paste0(format(round(df1_means[["percent_VPA"]], 1), nsmall = 1), " | ", format(round(df1_medians[["percent_VPA"]], 1), nsmall = 1)), 


          # % MVPA
          paste0(format(round(df1_means[["percent_MVPA"]], 1), nsmall = 1), " | ", format(round(df1_medians[["percent_MVPA"]], 1), nsmall = 1)),  

          # Ratio MVPA/SED
          paste0(format(round(df1_means[["ratio_mvpa_sed"]], 2), nsmall = 2), " | ", format(round(df1_medians[["ratio_mvpa_sed"]], 2), nsmall = 2)),

          # Total METs-hr
          paste0(format(round(df1_means[["mets_hours_mvpa"]], 2), nsmall = 2), " | ", format(round(df1_medians[["mets_hours_mvpa"]], 2), nsmall = 2)),

          # Total kcal
          paste0(format(round(df1_means[["total_kcal"]], 2), nsmall = 2),   " | ", format(round(df1_medians[["total_kcal"]], 2), nsmall = 2)),

          # NAP
          paste0(format(round(df1_means[["pal"]], 2), nsmall = 2),  " | ", format(round(df1_medians[["pal"]], 2), nsmall = 2)),  

          # Total pas
          paste0(round(df1_means[["total_steps"]], 0), " | ", round(df1_medians[["total_steps"]], 0))

          )
      ),   striped = TRUE, defaultPageSize = 21
)

if (params$rendered_by_shiny)
  shiny::setProgress(0.5)  # set progress to 50%

Comparaison avec des normes et des recommandations

# PAL
g_pal <- create_fig_pal(score = df1_means[["pal"]], "fr") + theme(plot.margin = margin(2, 1, 0.5, 1, "cm"))

# Steps
g_steps <- create_fig_steps(score = df1_means[["total_steps"]], "fr") + theme(plot.margin = margin(0, 1, 0.5, 1, "cm"))

# MVPA
g_mvpa <- create_fig_mvpa(score = df1_means[["minutes_MVPA"]], "fr") + theme(plot.margin = margin(0, 1, 0, 1, "cm"))

# SED
g_sed <- create_fig_sed(score = df1_means[["minutes_SED"]], "fr") + theme(plot.margin = margin(0, 1, 0, 1, "cm"))

# MVPA/SED ratio
g_ratio <- create_fig_ratio_mvpa_sed(score = df1_means[["ratio_mvpa_sed"]], "fr") + theme(plot.margin = margin(0, 1, 0, 1, "cm"))

# Whole figure
(g_pal + theme(legend.position = "top")) / g_steps / (g_mvpa | g_sed | g_ratio) + 
    plot_layout(heights = c(0.8, 0.7, 1.5)) & theme(legend.justification = "center")

Commentaires

# Determining physical activity guidelines status
guidelines_status <- get_guidelines_status(df1_means[["mets_hours_mvpa"]], language = "fr")

# Determining PAL status
pal_status <- get_pal_status(df1_means[["pal"]], language = "fr")

Selon la Food and Agriculture Organization of the United Nations (FAO), le NAP du patient pourrait être décrit comme r pal_status. Après avoir fait la conversion des minutes MPA et VPA vers les MET-heures, l'estimation du volume MVPA moyen journalier pour le patient est de r paste0(format(round(df1_means[["mets_hours_mvpa"]], 1), nsmall = 1)) MET-hr, ce qui pourrait correspondre au fait de tomber r guidelines_status (i.e., 7.5-15.0 MET-hr par semaine, ou 1.07-2.14 MET-hr par jour).

Indicateurs d'accumulation des pas

Résultats par jour : Vue tabulaire

reactable::reactable(params$results_by_day %>% dplyr::select(date, max_steps_60min:peak_steps_1min) %>%
                       dplyr::rename(
                        Date = date,
                        "Acc. pas max. 60 min (pas/min)" = max_steps_60min,
                        "Acc. pas max. 30 min (pas/min)" = max_steps_30min,
                        "Acc. pas max. 20 min (pas/min)" = max_steps_20min,
                        "Acc. pas max. 5 min (pas/min)"  = max_steps_5min,
                        "Acc. pas max. 1 min (pas/min)"  = max_steps_1min,
                        "Acc. pas pic 60 min (pas/min)"  = peak_steps_60min,
                        "Acc. pas pic 30 min (pas/min)"  = peak_steps_30min,
                        "Acc. pas pic 20 min (pas/min)"  = peak_steps_20min,
                        "Acc. pas pic 5 min (pas/min)"   = peak_steps_5min,
                        "Acc. pas pic 1 min (pas/min)"   = peak_steps_1min
                       ),  
                striped = TRUE,
                list(
                     "Date" = reactable::colDef(
                       style = list(position = "sticky", left = 0, background = "#CCCCCC", zIndex = 1),
                       headerStyle = list(position = "sticky", left = 0,  background = "#fff", zIndex = 1)
                     ),
                        "Acc. pas max. 60 min (pas/min)"  = reactable::colDef(minWidth = 160),
                        "Acc. pas max. 30 min (pas/min)"  = reactable::colDef(minWidth = 160),
                        "Acc. pas max. 20 min (pas/min)"  = reactable::colDef(minWidth = 160),
                        "Acc. pas max. 5 min (pas/min)"   = reactable::colDef(minWidth = 160),
                        "Acc. pas max. 1 min (pas/min)"   = reactable::colDef(minWidth = 160),
                        "Acc. pas pic 60 min (pas/min)"   = reactable::colDef(minWidth = 160),
                        "Acc. pas pic 30 min (pas/min)"   = reactable::colDef(minWidth = 160),
                        "Acc. pas pic 20 min (pas/min)"   = reactable::colDef(minWidth = 160),
                        "Acc. pas pic 5 min (pas/min)"    = reactable::colDef(minWidth = 160),
                        "Acc. pas pic 1 min (pas/min)"    = reactable::colDef(minWidth = 160)
                     )
                )

Résultats par jour : Vue graphique

create_fig_res_by_day(
  df2, 
  params$minimum_wear_time_for_analysis, 
  params$start_day_analysis, 
  params$end_day_analysis, 
  language = "fr",
  metrics = "step_acc"
  ) + theme(plot.margin = margin(1, 1, 1, 1, "cm"))

Moyennes | Médianes calculées à partir des jours valides

reactable::reactable(
  tibble::tibble(
          Indicateur = c("Nombre de jours valides", 
                     "Acc. pas max. 60 min (pas/min)",
                     "Acc. pas max. 30 min (pas/min)",
                     "Acc. pas max. 20 min (pas/min)",
                     "Acc. pas max. 5 min (pas/min)", 
                     "Acc. pas max. 1 min (pas/min)", 
                     "Acc. pas pic 60 min (pas/min)", 
                     "Acc. pas pic 30 min (pas/min)", 
                     "Acc. pas pic 20 min (pas/min)", 
                     "Acc. pas pic 5 min (pas/min)",  
                     "Acc. pas pic 1 min (pas/min)"  
          ),

        "Moyenne | m\xc3\xa9diane journali\xc3\xa8re obtenue \xc3\xa0 partir des jours valides" = c(

          # Nombre de jours valides
            paste0(df1_means[["valid_days"]]),

          # Max step accum 60min
            paste0(format(round(df1_means[["max_steps_60min"]], 2), nsmall = 2), " | ", format(round(df1_medians[["max_steps_60min"]], 2), nsmall = 2)),

          # Max step accum 30min
            paste0(format(round(df1_means[["max_steps_30min"]], 2), nsmall = 2), " | ", format(round(df1_medians[["max_steps_30min"]], 2), nsmall = 2)),

          # Max step accum 20min
            paste0(format(round(df1_means[["max_steps_20min"]], 2), nsmall = 2), " | ", format(round(df1_medians[["max_steps_20min"]], 2), nsmall = 2)),

          # Max step accum 5min
            paste0(format(round(df1_means[["max_steps_5min"]], 2), nsmall = 2), " | ", format(round(df1_medians[["max_steps_5min"]], 2), nsmall = 2)),

          # Max step accum 1min
            paste0(format(round(df1_means[["max_steps_1min"]], 2), nsmall = 2), " | ", format(round(df1_medians[["max_steps_1min"]], 2), nsmall = 2)),

          # Peak step accum 60min
            paste0(format(round(df1_means[["peak_steps_60min"]], 2), nsmall = 2), " | ", format(round(df1_medians[["peak_steps_60min"]], 2), nsmall = 2)),

          # Peak step accum 30min
            paste0(format(round(df1_means[["peak_steps_30min"]], 2), nsmall = 2), " | ", format(round(df1_medians[["peak_steps_30min"]], 2), nsmall = 2)),

          # Peak step accum 20min
            paste0(format(round(df1_means[["peak_steps_20min"]], 2), nsmall = 2), " | ", format(round(df1_medians[["peak_steps_20min"]], 2), nsmall = 2)),

          # Peak step accum 5min
            paste0(format(round(df1_means[["peak_steps_5min"]], 2), nsmall = 2), " | ", format(round(df1_medians[["peak_steps_5min"]], 2), nsmall = 2)),

          # Peak step accum 1min
            paste0(format(round(df1_means[["peak_steps_1min"]], 2), nsmall = 2), " | ", format(round(df1_medians[["peak_steps_1min"]], 2), nsmall = 2))
          )

        ),   striped = TRUE, defaultPageSize = 17
)

Indicateurs de distribution de l'intensité

Distribution du temps dans les zones d'intensité

params$graph_int_distri_bands

Modèles log-log

params$graph_int_distri_models

Résultats par jour : Vue tabulaire

epoch_label <- as.name(paste0(params$epoch,"s"))
reactable::reactable(params$results_by_day %>% dplyr::select(date, ig:M5) %>%
                       dplyr::rename(
                        Date = date,
                        "Gradient d'intensité"   = ig,
                        "M1/3 (counts/{{epoch_label}})"  :=  "M1/3",
                        "M120 (counts/{{epoch_label}})"  := M120,
                        "M60 (counts/{{epoch_label}})"   := M60, 
                        "M30 (counts/{{epoch_label}})"   := M30,
                        "M15 (counts/{{epoch_label}})"   := M15,
                        "M5 (counts/{{epoch_label}})"    := M5 
                       ),  
                striped = TRUE,
                list(
                     "Date" = reactable::colDef(
                       style = list(position = "sticky", left = 0, background = "#CCCCCC", zIndex = 1),
                       headerStyle = list(position = "sticky", left = 0,  background = "#fff", zIndex = 1)
                     )
                     )
                )

if (params$rendered_by_shiny)
  shiny::setProgress(0.75)  # set progress to 75%

Résultats par jour : Vue graphique

create_fig_res_by_day(
  df2, 
  params$minimum_wear_time_for_analysis, 
  params$start_day_analysis, 
  params$end_day_analysis, 
  language = "fr",
  metrics = "int_distri",
  epoch_label = paste0(params$epoch, "s")
  ) + theme(plot.margin = margin(1, 1, 1, 1, "cm"))

Moyennes | Médianes calculées à partir des jours valides

reactable::reactable(
  tibble::tibble(
          Indicateur = c("Nombre de jours valides", 
                     "Gradient d'intensité",
                     paste0("M1/3", " (counts/", params$epoch, "s)"),
                     paste0("M120", " (counts/", params$epoch, "s)"),
                     paste0("M60", " (counts/", params$epoch, "s)"),
                     paste0("M30", " (counts/", params$epoch, "s)"),
                     paste0("M15", " (counts/", params$epoch, "s)"),
                     paste0("M5", " (counts/", params$epoch, "s)")
          ),

        "Moyenne | m\xc3\xa9diane journali\xc3\xa8re obtenue \xc3\xa0 partir des jours valides" = c(

          # Nombre de jours valides
            paste0(df1_means[["valid_days"]]),

          # Gradient d'intensité
            paste0(format(round(df1_means[["ig"]], 2), nsmall = 2), " | ", format(round(df1_medians[["ig"]], 2), nsmall = 2)),

          # M1/3
            paste0(format(round(df1_means[["M1/3"]], 1), nsmall = 1), " | ",
                   format(round(df1_medians[["M1/3"]], 1), nsmall = 1)), 

          # M120
            paste0(format(round(df1_means[["M120"]], 1), nsmall = 1), " | ",
                   format(round(df1_medians[["M120"]], 1), nsmall = 1)), 

          # M60
            paste0(format(round(df1_means[["M60"]], 1), nsmall = 1), " | ",
                   format(round(df1_medians[["M60"]], 1), nsmall = 1)), 

          # M30
            paste0(format(round(df1_means[["M30"]], 1), nsmall = 1), " | ",
                   format(round(df1_medians[["M30"]], 1), nsmall = 1)),

          # M15
            paste0(format(round(df1_means[["M15"]], 1), nsmall = 1), " | ",
                   format(round(df1_medians[["M15"]], 1), nsmall = 1)), 

          # M5
            paste0(format(round(df1_means[["M5"]], 1), nsmall = 1), " | ",
                   format(round(df1_medians[["M5"]], 1), nsmall = 1))

          )

        ),   striped = TRUE, defaultPageSize = 17
)

Vue radar conçue à partir des moyennes des jours valides

cor_factor <- 60 / params$epoch

create_fig_mx_summary(
data = df1_means,
labels = NULL,
mpa_cutpoint = params$mpa_cutpoint / cor_factor, 
vpa_cutpoint = params$vpa_cutpoint / cor_factor
)

Indicateurs d'accumulation du comportement sédentaire obtenus à partir des jours valides

Distribution temporelle des périodes de comportement sédentaire

if(length(params$p_breaks_sed) == 1) {
  cat("Aucun résultat. Les résultats ne peuvent être obtenus qu'en utilisant des périodes de 60 s.")
} else {
  params$p_breaks_sed + labs(title = paste("Nombre journalier moyen de 'breaks':", params$mean_breaks_sed), x = "Temps (hh:mm)", color = "Durée de période (min)", fill = "Durée de période (min)")
}

Coefficient alpha, durée médiane des périodes (MBD), durée usuelle des périodes (UBD), et indice Gini

if(length(params$p_breaks_pa) == 1) {
  cat("Aucun résultat. Les résultats ne peuvent être obtenus qu'en utilisant des périodes de 60 s.")
} else {

  p1 <- params$p_alpha_sed + labs(x = "Durée de période (min)", color = "Durée (min)", fill = "Durée (min)") + guides(color = "none", fill = "none")
  p2 <- params$p_MBD_sed  + labs(x = "Durée de période (min)", color = "Durée (min)", fill = "Durée (min)") + guides(color = "none", fill = "none")
  p3 <- params$p_UBD_sed  + labs(x = "Durée de période (min)", y = "Fraction cumulée du temps total sédentaire", color = "Durée (min)", fill = "Durée (min)") 
  p4 <- params$p_gini_sed + labs(x = "Fraction du nombre de périodes de durée > x", y = "Fraction cumulée du temps total sédentaire", color = "Durée (min)", fill = "Durée (min)")

  (p1  | p2 | p3 | p4) + plot_layout(guides = "collect") & 
    theme(legend.position = 'bottom',
          axis.title = element_text(size = 15),
          legend.title = element_text(size = 17),
          legend.text = element_text(size = 15)
          )
}

Indicateurs d'accumulation de l'activité physique obtenus à partir des jours valides

Distribution temporelle des périodes d'activité physique

if(length(params$p_breaks_pa) == 1) {
  cat("Aucun résultat. Les résultats ne peuvent être obtenus qu'en utilisant des périodes de 60 s.")
} else {
  params$p_breaks_pa + labs(title = paste("Nombre journalier moyen de 'breaks':", params$mean_breaks_pa), x = "Temps (hh:mm)", color = "Durée de période (min)", fill = "Durée de période (min)")
}
if (params$rendered_by_shiny)
  shiny::setProgress(1)  # set progress to 100%

Coefficient alpha, durée médiane des périodes (MBD), durée usuelle des périodes (UBD), et indice Gini

if(length(params$p_breaks_pa) == 1) {
  cat("Aucun résultat. Les résultats ne peuvent être obtenus qu'en utilisant des périodes de 60 s.")
} else {
  p1 <- params$p_alpha_pa + labs(x = "Durée de période (min)", color = "Durée (min)", fill = "Durée (min)") + guides(color = "none", fill = "none")
  p2 <- params$p_MBD_pa  + labs(x = "Durée de période (min)", color = "Durée (min)", fill = "Durée (min)") + guides(color = "none", fill = "none")
  p3 <- params$p_UBD_pa  + labs(x = "Durée de période (min)", y = "Fraction cumulée du temps total d'activité physique", color = "Durée (min)", fill = "Durée (min)") 
  p4 <- params$p_gini_pa + labs(x = "Fraction du nombre de périodes de durée > x", y = "Fraction cumulée du temps total d'activité physique", color = "Durée (min)", fill = "Durée (min)") 

  (p1  | p2 | p3 | p4) + plot_layout(guides = "collect") & 
    theme(legend.position = 'bottom',
          axis.title = element_text(size = 15),
          axis.text = element_text(size = 10),
          legend.title = element_text(size = 17),
          legend.text = element_text(size = 15)
          )
}


pydemull/activAnalyzer documentation built on June 1, 2025, 1:09 p.m.