hollow: Fire risk for an animal sheltering in a wooden hollow

Description Usage Arguments Details Value

View source: R/Fauna.R

Description

Calculates the likelihood of mortality to an animal caused by an approaching fire front

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
hollow(
  Surf,
  Plant,
  percentile = 0.5,
  Height = 1,
  woodDensity = 700,
  barkDensity = 500,
  wood = 0.1,
  bark = 0.02,
  RH = 0.2,
  water = 0.2,
  low = 1,
  high = 50,
  var = 10,
  Pressure = 1013.25,
  Altitude = 0,
  Dimension = 0.3,
  Area = 0.03,
  hollowTemp = 25,
  Shape = "Flat",
  updateProgress = NULL
)

Arguments

Surf

The dataframe 'runs' exported from Monte Carlos as 'Summary.csv'

Plant

The dataframe 'IP' exported from Monte Carlos as 'IP.csv'.

percentile

defines which heating statistics are used for each second, from 0 (min) to 1 (max)

Height

The height directly over ground (m) at which the species is expected to shelter from a fire.

woodDensity

The density of wood in the tree or log housing the hollow (kg/m3)

barkDensity

The density of bark in the tree or log housing the hollow (kg/m3)

wood

The thickness of wood on the thinnest side of the hollow (m)

bark

The thickness of bark on the thinnest side of the hollow (m)

RH

The relative humidity (0-1)

water

The proportion oven-dry weight of moisture in the bark and wood

low

The closest horizontal distance between the flame origin and the point (m)

high

The furthest horizontal distance between the flame origin and the point (m)

var

The angle in degrees that the plume spreads above/below a central vector;defaults to 10

Pressure

Sea level atmospheric pressure (hPa)

Altitude

Height above sea level (m)

Dimension

The "Characteristic length" of the hollow (m)

Area

The surface area of the thinnest side of the hollow (m^2)

hollowTemp

The starting temperature inside the hollow (deg C)

Shape

The approximate shape of the hollow exterior - either "Flat", "Sphere", or "Cylinder"

updateProgress

Progress bar for use in the dashboard

Details

Utilises the output tables from 'threat' and 'radiation', and adds to these the Reynolds Number, heat transfer coefficients, Newton's convective energy transfer coefficient, and the temperature of the object each second.

Reynolds Number utilises a standard formulation (e.g. Gordon, N. T., McMahon, T. A. & Finlayson, B. L. Stream hydrology: an introduction for ecologists. (Wiley, 1992))

Convective heat transfer coefficients use the widely adopted formulations of Williams, F. A. Urban and wildland fire phenomenology. Prog. Energy Combust. Sci. 8, 317–354 (1982), and Drysdale, D. An introduction to fire dynamics. (John Wiley and Sons, 1985) utilising a Prandtl number of 0.7.

Finds animal mortality within a hollow based on the maximum tolerable temperature for a given vapour pressure deficit, based on data from Lawrence, G. E. Ecology of vertebrate animals in relation to chaparral fire in the Sierra Nevada foothills. Ecology 47, 278–291 (1966)

Heat is transferred into the hollow using Fourier's Law

Thermal conductivity of bark is modelled as per Martin, R. E. Thermal properties of bark. For. Prod. J. 13, 419–426 (1963)

Specific heat of bark is modelled using Kain, G., Barbu, M. C., Hinterreiter, S., Richter, K. & Petutschnigg, A. Using bark as a heat insulation material. BioResources 8, 3718–3731 (2013)

Thermal conductivity of wood is modelled using an approach from Kollmann, F. F. P. & Cote, W. A. Principles of wood science and technology I. Solid wood. (Springer-Verlag, 1968)

Evaporates water at 100 degrees C

Specific heat of wood is derived from an established empirical relationship in Volbehr, B. Swelling of wood fiber. PhD Thesis. (University of Kiel, 1896)

Value

dataframe


pzylstra/Impact documentation built on April 1, 2021, 2:32 a.m.