calKaKs | R Documentation |
The mutations are classified by classifyMut()
internally.
calKaKs( maf, patient.id = NULL, class = "SP", classByTumor = FALSE, vaf.cutoff = 0.05, parallel = TRUE )
maf |
Maf or MafList object generated by |
patient.id |
Select the specific patients. Default |
class |
The class which would be represented.
"SP" (Shared pattern: Public/Shared/Private), other options: "CS" (Clonal status: Clonal/Subclonl)
and "SPCS". see |
vaf.cutoff |
Removing mutations with low variant allele frequency (VAF). |
parallel |
If |
library(MesKit) data.type <- "split1" maf <- readMaf( mafFile = system.file(package = "MPTevol", "extdata", sprintf("meskit.%s.mutation.txt", data.type)), ccfFile = system.file(package = "MPTevol", "extdata", sprintf("meskit.%s.CCF.txt", data.type)), clinicalFile = system.file(package = "MPTevol", "extdata", sprintf("meskit.%s.clinical.txt", data.type)), refBuild = "hg19", ccf.conf.level = 0.95 ) # calKaKas kaks <- calKaKs(maf, patient.id = "Breast", class = "SP", parallel = TRUE, vaf.cutoff = 0.05) kaks kaks <- calKaKs(maf, patient.id = "Breast", class = "CS", parallel = TRUE, vaf.cutoff = 0.05) kaks kaks <- calKaKs(maf, class = "SP", parallel = TRUE, vaf.cutoff = 0.05) kaks
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.