mr.raps.mle | R Documentation |
Main function for RAPS (MLE weights)
mr.raps.all
: Quick analysis with all six MLE methods
mr.raps.simple
: No overdispersion, l2 loss
mr.raps.overdispersed
: Overdispersion, l2 loss
mr.raps.simple.robust
: No overdispersion, robust loss
mr.raps.overdispersed.robust
: Overdispersed, robust loss
mr.raps.mle(
b_exp,
b_out,
se_exp,
se_out,
over.dispersion = FALSE,
loss.function = c("l2", "huber", "tukey"),
diagnostics = FALSE,
pruning = TRUE,
se.method = c("sandwich", "bootstrap"),
k = switch(loss.function[1], l2 = NULL, huber = 1.345, tukey = 4.685),
B = 1000,
suppress.warning = FALSE
)
mr.raps.mle.all(b_exp, b_out, se_exp, se_out)
mr.raps.simple(b_exp, b_out, se_exp, se_out, diagnostics = FALSE)
mr.raps.overdispersed(
b_exp,
b_out,
se_exp,
se_out,
initialization = c("simple", "mode"),
suppress.warning = FALSE,
diagnostics = FALSE,
pruning = TRUE,
niter = 20,
tol = .Machine$double.eps^0.5
)
mr.raps.simple.robust(
b_exp,
b_out,
se_exp,
se_out,
loss.function = c("huber", "tukey"),
k = switch(loss.function[1], huber = 1.345, tukey = 4.685),
diagnostics = FALSE
)
mr.raps.overdispersed.robust(
b_exp,
b_out,
se_exp,
se_out,
loss.function = c("huber", "tukey"),
k = switch(loss.function[1], huber = 1.345, tukey = 4.685),
initialization = c("l2", "mode"),
suppress.warning = FALSE,
diagnostics = FALSE,
pruning = TRUE,
niter = 20,
tol = .Machine$double.eps^0.5
)
b_exp |
A vector of SNP effects on the exposure variable, usually obtained from a GWAS. |
b_out |
A vector of SNP effects on the outcome variable, usually obtained from a GWAS. |
se_exp |
A vector of standard errors of |
se_out |
A vector of standard errors of |
over.dispersion |
Should the model consider overdispersion (systematic pleiotropy)? Default is FALSE. |
loss.function |
Either the squared error loss ( |
diagnostics |
Should the function returns diagnostic plots and results? Default is FALSE |
pruning |
Should the function remove unusually large |
se.method |
How should the standard error be estimated? Either by sandwich variance formula (default and recommended) or the bootstrap. |
k |
Threshold parameter in the Huber and Tukey loss functions. |
B |
Number of bootstrap resamples |
suppress.warning |
Should warning messages be suppressed? |
initialization |
Method to initialize the robust estimator. "Mode" is not supported currently. |
niter |
Maximum number of interations to solve the estimating equations. |
tol |
Numerical precision. |
mr.raps.mle
is the main function for RAPS. It is replaced by the more general and robust function mr.raps.shrinkage
.
A list
Estimated causal effect
Standard error of beta.hat
Two-sided p-value of beta.hat
Overdispersion parameter if over.dispersion = TRUE
Standard error of tau2.hat
Standardized residuals of each SNP, returned if diagnostics = TRUE
Leave-one-out estimates of beta.hat
, returned if diagnostics = TRUE
Median of the bootstrap estimates, returned if se.method = "bootstrap"
Median absolute deviation of the bootstrap estimates, returned if se.method = "bootstrap"
mr.raps.mle.all()
:
mr.raps.simple()
:
mr.raps.overdispersed()
:
mr.raps.simple.robust()
:
mr.raps.overdispersed.robust()
:
Qingyuan Zhao, Jingshu Wang, Gibran Hemani, Jack Bowden, Dylan S. Small. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. https://arxiv.org/abs/1801.09652.
data(bmi.sbp)
attach(bmi.sbp)
## All estimators
mr.raps.mle.all(beta.exposure, beta.outcome, se.exposure, se.outcome)
## Diagnostic plots
res <- mr.raps.mle(beta.exposure, beta.outcome, se.exposure, se.outcome,
diagnostics = TRUE)
res <- mr.raps.mle(beta.exposure, beta.outcome, se.exposure, se.outcome,
TRUE, diagnostics = TRUE)
res <- mr.raps.mle(beta.exposure, beta.outcome, se.exposure, se.outcome,
TRUE, "tukey", diagnostics = TRUE)
detach(bmi.sbp)
data(bmi.bmi)
attach(bmi.bmi)
## Because both the exposure and the outcome are BMI, the true "causal" effect should be 1.
## All estimators
mr.raps.mle.all(beta.exposure, beta.outcome, se.exposure, se.outcome)
detach(bmi.bmi)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.