BNEngineNDB | R Documentation |
The BNEngineNDB
is a
BNEngine
which is not attached to the database.
In particular, it cannot store student records, so it cannot maintain
state between scoring sessions without extenal help.
newBNEngineNDB(app = "default", warehouse, listenerSet = NULL,
manifest = data.frame(), processN = Inf, waittime = 0.25,
profModel = character(), statmat = data.frame(),
evidenceQueue = new("ListQueue",app, list()),
activeTest = "EAActive",
errorRestart=c("checkNoScore","stopProcessing","scoreAvailable"),
srs =StudentRecordSet(app=app,warehouse=warehouse, db=MongoDB(noMongo=TRUE)),
...)
app |
A character scalar giving the globally unique identifier for the application. |
warehouse |
A |
listenerSet |
A |
manifest |
A data frame providing a manifest for the
|
processN |
The number of records to process before stopping. The
default value |
waittime |
The amout of time (in seconds) to wait before checking again for new evidence sets when the evidence set queue is empty. |
profModel |
The name of the proficiency model (its ID in the warehouse manifest). |
statmat |
A data.frame describing the statistics. See
|
evidenceQueue |
A object of class |
activeTest |
The pathname for the file whose existance will be used to determine when the engine should shut down. |
errorRestart |
A character scalar describing how to handle errors. The default, "checkNoScore" will continue scoreing to try to find additional errors, but will not report statistics; the "scoreAvailable" option reports the scores based on the evidence sets which do not produce errors. The "stopProcessing" option immediately stops processing. |
srs |
A |
... |
Extra arguments are ignored. This allows arguments for other engine versions to be set in the parameters and ignored. |
This creates an uninitialized BNEngine
,
specifically a BNEngineNDB
.
An object of calls BNEngineNDB
which is capable
of scoring student models.
Russell Almond
Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational Assessment. Springer. Especially Chapter 13.
Classes:
BNEngine
, BNEngineMongo
Constituent parts:
StudentRecordSet
, PnetWarehouse
ListenerSet
Setup Functions:
loadManifest
,
setupDefaultSR
,
configStats
,
baselineHist
,
Main Loop Functions:
mainLoop
,
accumulateEvidence
,
handleEvidence
,
getRecordForUser
,
logEvidence
,
updateSM
,
updateStats
,
updateHist
,
announceStats
,
## Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
appid <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")
netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)
stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)
Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)
cl <- new("CaptureListener")
listeners <- list("cl"=cl)
ls <- ListenerSet(sender= paste("EAEngine[",appid,"]"),
listeners=listeners)
eng <- newBNEngineNDB(app=appid,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")
## Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.