Description Usage Arguments Details Value See Also Examples
This function fits the semi-supervised mixture model multiple times.
It is called by mixtura and scrutor.
1  | 
y | 
 observations:
numeric vector of length   | 
z | 
 class labels:
integer vector of length   | 
dist | 
 distributional assumption:
character   | 
phi | 
 dispersion parameters:
numeric vector of length   | 
pi | 
 zero-inflation parameter(s):
numeric vector of length   | 
gamma | 
 offset:
numeric vector of length   | 
starts | 
 restarts of the   | 
it.em | 
 (maximum) number of iterations in the   | 
epsilon | 
 convergence criterion for the   | 
The distributions are parametrised as follows:
 Gaussian 
y ~ N(mean,sd^2) 
E[y]=mean 
Var[y]=sd^2
 Negative binomial 
y ~ NB(mu,phi) 
E[y]=mu 
Var[y]=mu+phi*mu^2
 Zero-inflated negative binomial 
y ~ ZINB(mu,phi,pi) 
E[y]=(1-pi)*mu
This function returns the parameter estimates, the posterior probabilities, and the likelihood.
posterior | 
 probability of belonging to class 1:
numeric vector of length   | 
converge | 
 path of the log-likelihood:
numeric vector with maximum length   | 
estim0 | 
 parameter estimates under   | 
estim1 | 
 parameter estimates under   | 
loglik0 | 
 log-likelihood under   | 
loglik1 | 
 log-likelihood under   | 
lrts | 
 likelihood-ratio test statistic: positive numeric  | 
This is an internal function.
The user functions are mixtura and scrutor.
1 2 3 4 5 6 7 8  | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.