test_pdiff_paired <- function() {
# From summary data -------------------
pdiff_paired <- estimate_pdiff_paired(
cases_consistent = 60,
cases_inconsistent = 50,
not_cases_consistent = 68,
not_cases_inconsistent = 22,
conf_level = 0.95
)
estimate_pdiff_paired(
cases_consistent = 60,
cases_inconsistent = 50,
not_cases_consistent = 68,
not_cases_inconsistent = 22,
case_label = "Answered True",
not_case_label = "Answered False",
comparison_measure_name = "9th grade",
reference_measure_name = "12th grade",
conf_level = 0.95
)
# From raw data, data frame -------------------
pre_test <- as.factor(
sample(
c("Depressed", "Not Depressed"),
size = 300,
replace = TRUE,
prob = c(0.75, 0.25)
)
)
post_test <- as.factor(
sample(
c("Depressed", "Not Depressed"),
size = 300,
replace = TRUE,
prob = c(0.25, 0.75)
)
)
d_treat <- data.frame(
"before" = pre_test,
"after" = post_test
)
estimate_pdiff_paired(
data = d_treat,
reference_measure = "before",
comparison_measure = "after"
)
# More than 2 levels -------------------
pre_test <- as.factor(
sample(
c("Depressed", "Not Depressed", "No Answer"),
size = 300,
replace = TRUE,
prob = c(0.65, 0.25, 0.10)
)
)
post_test <- as.factor(
sample(
c("Depressed", "Not Depressed", "No Answer"),
size = 300,
replace = TRUE,
prob = c(0.25, 0.65, 0.10)
)
)
d_treat <- data.frame(
"before" = pre_test,
"after" = post_test
)
estimate_pdiff_paired(
data = d_treat,
reference_measure = "before",
comparison_measure = "after",
case_label = "No Answer"
)
estimate_pdiff_paired(
data = d_treat,
reference_measure = "before",
comparison_measure = "after",
case_label = 3
)
# With NA values --------------------------------
pre_test <- as.factor(
sample(
c("Depressed", "Not Depressed", "No Answer", NA),
size = 300,
replace = TRUE,
prob = c(0.65, 0.25, 0.05, 0.05)
)
)
post_test <- as.factor(
sample(
c("Depressed", "Not Depressed", "No Answer", NA),
size = 300,
replace = TRUE,
prob = c(0.25, 0.65, 0.05, 0.05)
)
)
d_treat <- data.frame(
"before" = pre_test,
"after" = post_test
)
estimate <- estimate_pdiff_paired(
data = d_treat,
reference_measure = "before",
comparison_measure = "after",
case_label = "No Answer",
count_NA = TRUE
)
# As a vector
estimate <- estimate_pdiff_paired(
reference_measure = pre_test,
comparison_measure = post_test,
case_label = "No Answer"
)
bh <- c(
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain "
)
ah <- c(
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" No Pain " ,
" Pain " ,
" Pain " ,
" Pain " ,
" Pain "
)
bh <- trimws(bh)
ah <- trimws(ah)
mydf <- data.frame(before_h = factor(bh, levels = c("Pain", "No Pain")), after_h = factor(ah, levels = c("Pain", "No Pain")))
mydf
estimate <- estimate_pdiff_paired(mydf, after_h, before_h)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.