Description Usage Arguments Details Value Author(s) References Examples
Probability mass function, cumulative distribution function, quantile function, and random generation for the Box-Cox symmetric (BCS) class of distributions.
1 2 3 4 5 6 7 |
x, q |
vector of non-negative quantiles. |
mu |
vector of location parameter values. |
sigma |
vector of dispersion parameter values. |
lambda |
vector of skewness parameter values. |
nu |
vector of right tail/kurtosis parameter values. Not all
distributions are indexed by this parameter. In this case,
|
gen |
character specification passed as argument to |
p |
vector of probabilities. |
n |
number of random values to return. |
rep |
number of replicates with size |
This set of functions represents the probability function, the cumulative distribution function, quantile function, and a random number generator for the Box-Cox symmetric class of distributions proposed by Ferrari and Fumes (2017). This class of distributions includes the Box-Cox t (Rigby and Stasinopoulos, 2006), Box-Cox Cole-Green (or Box-Cox normal; Cole and Green, 1992), Box-Cox power exponential (Rigby and Stasinopoulos, 2004) distributions, and the class of the log-symmetric distributions (Vanegas and Paula, 2016) as special cases. The current available generating distributions can be seen below.
Distribution | Abbreviation | Does it have an extra parameter? |
Cauchy | "CA" | no |
Canonical slash | "CSL" | no |
Double exponential (Laplace) | "DE" | no |
Logistic | "LO" | no |
Normal | "NO" | no |
Power exponential | "PE" | yes |
Slash | "SL" | yes |
Student-t | "ST" | yes |
dBCS
returns the density function, pBCS
gives the distribution function, qBCS
gives the quantile function,
and rBCS
generates random observations.
Rodrigo M. R. Medeiros <rodrigo.matheus@live.com>
Cole, T., & Green, P.J. (1992). Smoothing reference centile curves: the LMS method and penalized likelihood. Stat. Med, 11, 1305–1319.
Ferrari, S. L., & Fumes, G. (2017). Box-Cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101, 321–344.
Rigby, R. A., & Stasinopoulos, D. M. (2004). Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution. Statistics in medicine, 23, 3053–3076.
Rigby, R. A., & Stasinopoulos, D. M. (2006). Using the Box-Cox t distribution in GAMLSS to model skewness and kurtosis. Statistical Modelling, 6, 209-229.
Vanegas, L. H., & Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196–220.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ## Not run:
## Box-Cox t
y <- rBCS(500, 8, 0.15, 1, 10, gen = "ST")
par(mfrow = c(1, 2))
hist(y, prob = TRUE, main = "Box Cox t")
curve(dBCS(x, 8, 0.15, 1, 10, gen = "ST"), add = TRUE, col = 2, lwd = 2)
plot(ecdf(y), main = "", xlab = "y")
curve(pBCS(x, 8, 0.15, 1, 10, gen = "ST"), add = TRUE, col = 2, lwd = 2)
## Box-Cox Cole-Green
y <- rBCS(500, 8, 0.15, 1, 10, gen = "NO")
hist(y, prob = TRUE, main = "Box Cox Cole-Green")
curve(dBCS(x, 8, 0.15, 1, 10, gen = "NO"), add = TRUE, col = 2, lwd = 2)
plot(ecdf(y), main = "", xlab = "y")
curve(pBCS(x, 8, 0.15, 1, 10, gen = "NO"), add = TRUE, col = 2, lwd = 2)
## Box-Cox Cauchy
y <- rBCS(500, 8, 0.15, -1.2, gen = "CA")
hist(y, prob = TRUE, main = "Box-Cox Cauchy")
curve(dBCS(x, 8, 0.15, -1.2, gen = "CA"), add = TRUE, col = 2, lwd = 2)
plot(ecdf(y), main = "", xlab = "y")
curve(pBCS(x, 8, 0.15, -1.2, gen = "CA"), add = TRUE, col = 2, lwd = 2)
## Box-Cox power exponential
y <- rBCS(500, 8, 0.15, 1, 10, gen = "PE")
hist(y, prob = TRUE, main = "Box Cox PE")
curve(dBCS(x, 8, 0.15, 1, 10, gen = "PE"), add = TRUE, col = 2, lwd = 2)
plot(ecdf(y), main = "")
curve(pBCS(x, 8, 0.15, 1, 10, gen = "PE"), add = TRUE, col = 2, lwd = 2)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.