## ----echo = TRUE--------------------------------------------------------------
library(magrittr)
## ----message=FALSE------------------------------------------------------------
ds_tb <- youthvars::replication_popl_tb %>%
youthvars::transform_raw_ds_for_analysis()
## ----inputds, eval = knitr::is_html_output(), results='asis'------------------
ds_tb %>%
head() %>%
ready4show::print_table(output_type_1L_chr = "HTML",
caption_1L_chr = "Input dataset",
mkdn_tbl_ref_1L_chr = "tab:inputds")
## -----------------------------------------------------------------------------
use_fake_data_1L_lgl <- TRUE
## -----------------------------------------------------------------------------
dictionary_tb <- youthvars::make_final_repln_ds_dict() #youthvars::make_tfd_repln_ds_dict_r3()
## ----dictionary, eval = knitr::is_html_output(), results='asis'---------------
dictionary_tb %>%
ready4show::print_table(output_type_1L_chr = "HTML",
caption_1L_chr = "Data dictionary",
mkdn_tbl_ref_1L_chr = "tab:dictionary")
## ----echo = TRUE--------------------------------------------------------------
ds_descvs_ls <- TTU::make_ds_descvs_ls(candidate_predrs_chr = c("K6","PHQ9"),
cohort_descv_var_nms_chr = c("d_age", "d_relation_s","d_studying_working","c_p_diag_s","c_clinical_staging_s"),
dictionary_tb = dictionary_tb,
id_var_nm_1L_chr = "fkClientID",
msrmnt_date_var_nm_1L_chr = "d_interview_date",
round_var_nm_1L_chr = "round",
round_vals_chr = c("Baseline", "Follow-up"),
maui_item_pfx_1L_chr = "aqol6d_q",
utl_wtd_var_nm_1L_chr = "aqol6d_total_w",
utl_unwtd_var_nm_1L_chr = "aqol6d_total_c")
## -----------------------------------------------------------------------------
predictors_lup <- TTU::TTU_predictors_lup(TTU::make_pt_TTU_predictors_lup(short_name_chr = ds_descvs_ls$candidate_predrs_chr,
long_name_chr = c("K6 total score", "PHQ9 total score"),
min_val_dbl = 0,
max_val_dbl = c(24,27),
class_chr = "integer",
increment_dbl = 1,
class_fn_chr = "as.integer",
mdl_scaling_dbl = 0.01,
covariate_lgl = F))
## -----------------------------------------------------------------------------
maui_params_ls <- TTU::make_maui_params_ls(maui_itm_short_nms_chr = c("Household tasks", "Getting around","Morbility","Self care","Enjoy close rels","Family rels", "Community involvement","Despair","Worry", "Sad", "Agitated","Energy level","Control", "Coping","Frequency of pain", "Degree of pain","Pain interference","Vision", "Hearing","Communication"),
maui_scoring_fn = youthvars::add_adol6d_scores)
## -----------------------------------------------------------------------------
mdl_types_lup <- TTU::get_cndts_for_mxd_mdls()
## ----mdltypeslup, eval = knitr::is_html_output(), results='asis'--------------
mdl_types_lup %>%
ready4show::print_table(output_type_1L_chr = "HTML",
caption_1L_chr = "Candidate model types lookup table",
mkdn_tbl_ref_1L_chr = "tab:mdltypeslup")
## -----------------------------------------------------------------------------
mdl_smry_ls <- TTU::make_mdl_smry_ls(mdl_types_lup = mdl_types_lup,
folds_1L_int = 10L,
max_nbr_of_boruta_mdl_runs_int = 300L)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.