transform_data_tb_for_cmprsn | R Documentation |
transform_data_tb_for_cmprsn() is a Transform function that edits an object in such a way that core object attributes - e.g. shape, dimensions, elements, type - are altered. Specifically, this function implements an algorithm to transform data tibble for comparison. Function argument data_tb specifies the object to be updated. Argument model_mdl provides the object to be updated. The function returns Transformed data (a tibble).
transform_data_tb_for_cmprsn(
data_tb,
model_mdl,
depnt_var_nm_1L_chr = "utl_total_w",
source_data_nm_1L_chr = "Original",
new_data_is_1L_chr = "Predicted",
predn_type_1L_chr = NULL,
family_1L_chr = NA_character_,
impute_1L_lgl = F,
is_brms_mdl_1L_lgl = F,
sd_dbl = NA_real_,
sfx_1L_chr = "",
tfmn_for_bnml_1L_lgl = F,
tfmn_1L_chr = "NTF",
utl_cls_fn = NULL,
utl_min_val_1L_dbl = NA_real_
)
data_tb |
Data (a tibble) |
model_mdl |
Model (a model) |
depnt_var_nm_1L_chr |
Dependent variable name (a character vector of length one), Default: 'utl_total_w' |
source_data_nm_1L_chr |
Source data name (a character vector of length one), Default: 'Original' |
new_data_is_1L_chr |
New data is (a character vector of length one), Default: 'Predicted' |
predn_type_1L_chr |
Prediction type (a character vector of length one), Default: NULL |
family_1L_chr |
Family (a character vector of length one), Default: 'NA' |
impute_1L_lgl |
Impute (a logical vector of length one), Default: F |
is_brms_mdl_1L_lgl |
Is bayesian regression models model (a logical vector of length one), Default: F |
sd_dbl |
Standard deviation (a double vector), Default: NA |
sfx_1L_chr |
Suffix (a character vector of length one), Default: ” |
tfmn_for_bnml_1L_lgl |
Transformation for binomial (a logical vector of length one), Default: F |
tfmn_1L_chr |
Transformation (a character vector of length one), Default: 'NTF' |
utl_cls_fn |
Utility class (a function), Default: NULL |
utl_min_val_1L_dbl |
Utility minimum value (a double vector of length one), Default: NA |
Transformed data (a tibble)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.