knitr::opts_chunk$set( collapse = TRUE, comment = "#>", results = "markup", # to regenerate the images and clear the output, set eval = TRUE eval = FALSE )
*All benchmarks below are done on a pretty old Intel Xeon X3470 CPU with 4 cores, 8 threads @ 2.93GHz . You can expect ~2x better performance on modern CPUs.
There are many tools to benchmark HTTP API. We will use apib which is successor of a standard ab
tool.
We will benchmark a very simple web service - it receives HTTP request at /fib?n=10
and answers with fibonacci number.
Our testing RestRserve application is implemented below:
calc_fib = function(n) { if (n < 0L) stop("n should be >= 0") if (n == 0L) return(0L) if (n == 1L || n == 2L) return(1L) x = rep(1L, n) for (i in 3L:n) x[[i]] = x[[i - 1]] + x[[i - 2]] x[[n]] } bench_app = function(calc_fn) { library(RestRserve) backend = BackendRserve$new() app = Application$new(content_type = "text/plain") app$logger$set_log_level("off") app$add_get("/fib", FUN = function(request, response) { n = as.integer(request$get_param_query("n")) if (length(n) == 0L || is.na(n)) { raise(HTTPError$bad_request()) } response$set_body(list(answer = calc_fn(n))) }) backend$start(app = app, http_port = 8080) }
Sample calc_fib()
benchmarking:
microbenchmark::microbenchmark(low = calc_fib(10), times = 10)
At the moment RestRserve supports single backend - Rserve.
Configurations:
RestRserve
can utilize all CPU cores and process requests in parallel. We will use multiple number of threads to see how it affects performance.RestRserve
checks RESTRSERVE_RUNTIME_ASSERTS
environment variable. It controls the amount of input validation RestRserve
performs internally using checkmate package. Despite the fact that runtime checks comes with additional time overhead this variable is set to TRUE
by default. We value correctness and robustness of the application at the first place. We will benchmark application with different values of RESTRSERVE_RUNTIME_ASSERTS
to see the difference.Code below implements allows to test combinations options:
library(callr) library(data.table) parse_apib_results = function(x) { apib_executable_path = "apib" #apib_executable_path = path.expand("~/projects/apib/release/apib/apib") csv_header = system2(command = apib_executable_path, args = "--header-line", stdout = T) csv_header = strsplit(csv_header, ",", T)[[1]] csv_header = c("n_threads", "fibonacci", "flavor", csv_header[-1]) if (length(x) == 1) x = paste0(x, "\n") results = paste(x, collapse = "\n") fread(results, col.names = csv_header) } run_apib = function( n_threads = c(4, 2, 1), n_sec = 5, keep_alive = -1, flavor = "", fib_count = 10) { apib_executable_path = "apib" #apib_executable_path = path.expand("~/projects/apib/release/apib/apib") results = character() for (n_thread in n_threads) { res = system2( command = apib_executable_path, args = sprintf( "-c %d -d %d -k %d --csv-output \'http://127.0.0.1:8080/fib?n=%d\'", n_thread, n_sec, keep_alive, fib_count ), stdout = TRUE ) results[[length(results) + 1]] = paste0(n_thread, ",", fib_count, ",", flavor, res) } results } apib_bench = function( n_sec = 5, keep_alive = -1, fib_counts = 10, runtime_checks = c(FALSE, TRUE)) { results = character() for (fib_count in fib_counts) { for (runtime_check in runtime_checks) { rr = r_bg( bench_app, list(calc_fn = calc_fib), env = c("RESTRSERVE_RUNTIME_ASSERTS" = as.character(runtime_check)) ) # Wait for R to start Sys.sleep(2) flavor = if (runtime_check) "RestRserve + runtime checks" else "RestRserve" results = c( results, run_apib( n_sec = n_sec, keep_alive = keep_alive, flavor = flavor, fib_count = fib_count ) ) cat(sep = "", "fibonacci: ", fib_count, "; flavor: ", flavor, "\n", paste0(rr$read_output(), collapse = "\n"), "\n" ) rr$kill_tree() } } parse_apib_results(results) }
library(ggplot2) plot_results = function(x, title, file = NULL, facet = FALSE) { colour_pal = c( "RestRserve" = "#61D6AD", "RestRserve + runtime checks" = "#999999", "plumber" = "#999999", "plumber + future" = "#000049" ) p = ggplot(x) + geom_bar(aes(x = as.factor(n_threads), y = Throughput, fill = flavor), stat = "identity", position = "dodge") + geom_text( aes(x = as.factor(n_threads), y = Throughput, col = flavor, label = round(Throughput)), position = position_dodge(width = 1), show.legend = FALSE, vjust = -0.1 ) + scale_y_continuous(expand = expansion(mult = c(0., 0.1))) + scale_fill_manual(values = colour_pal) + scale_color_manual(values = colour_pal) + theme_minimal() + theme( plot.title = element_text(hjust = 0.5), legend.position = "bottom" ) + labs( x = "concurrent requests", y = "requests per second", title = title, fill = "Runtime Checks", col = NULL ) if (facet) { p = p + facet_grid(fibonacci ~ ., scales = "free_y", labeller = function(labels) { list( fibonacci = c("15" = "computation: low", "20" = "computation: medium", "25" = "computation: high")[ label_value(labels)$fibonacci ] ) }) } if (!is.null(file)) { ggsave(file, p, height = 6, width = 7, dpi = 150) } p }
results_runtime = apib_bench(keep_alive = -1, fib_counts = 10)
plot_results( results_runtime, "RestRserve", "../img/bench-rps.png" )
Keep in mind that creating new connections is quite expensive for any HTTP server. For RestRserve
's Rserve
backend this is particularly true since for each new connection it forks a child process (which has relatively high cost). With other backends slow down might be less significant.
results_no_keep_alive = apib_bench(keep_alive = 0, fib_counts = 10)
plot_results( results_no_keep_alive, "RestRserve - No keep-alive", "../img/bench-rps-no-keep-alive.png" )
Nonetheless one can always put application behind proxy (such as HAproxy or nginx). It will maintain pool of connections to RestRserve and hence won't suffer from creating new connections.
Support for promises
and future
was added in plumber
v1.0.0. Extra coding will need to be done within a plumber definition to distinguish which routes utilize promises.
We will rewrite our calc_fib
function in a less efficient way in order to simulate different amount of computation required by handler. We will benchmark frameworks against three styles of routes (low computation, n = 15
; medium computation, n = 20
; high computation, n = 25
) using multiple apib
testing threads (1, 2, 4).
calc_fib = function(n) { calc_fib_rec = function(n) { if (n < 0L) stop("n should be >= 0") if (n == 0L) return(0L) if (n == 1L || n == 2L) return(1L) x = rep(1L, n) for (i in 3L:n) x[[i]] = x[[i - 1]] + x[[i - 2]] x[[n]] calc_fib_rec(n - 1) + calc_fib_rec(n - 2) } calc_fib_rec(n) }
microbenchmark::microbenchmark( low = calc_fib(15), medium = calc_fib(20), high = calc_fib(25), times = 10 )
plumber_app = function(calc_fn, use_future = FALSE) { if (isTRUE(use_future)) { # multiple cores library(future) plan(multiprocess(workers = 4)) # max number of threads fib_route = function(n = -1) { n = as.integer(n) if (is.na(n)) stop("\"n\"must be integer number.") future({ calc_fn(n) }) } } else { # single core fib_route = function(n = -1) { n = as.integer(n) if (is.na(n)) stop("\"n\"must be integer number.") calc_fn(n) } } library(plumber) pr() %>% pr_get( "/fib", fib_route, serializer = plumber::serializer_text() ) %>% pr_run(port = 8080) } apib_bench_plumber = function( n_sec = 5, keep_alive = -1, fib_counts = c(15, 20, 25)) { results = character() for (fib_count in fib_counts) { for (use_future in list(TRUE, FALSE)) { rr = r_bg( plumber_app, list(calc_fn = calc_fib, use_future = use_future), stdout = "|", stderr = "2>&1" ) Sys.sleep(2) flavor = if (use_future) "plumber + future" else "plumber" results = c( results, run_apib( n_threads = c(4, 2, 1), n_sec = n_sec, keep_alive = keep_alive, flavor = flavor, fib_count = fib_count ) ) cat(sep = "", "fibonacci: ", fib_count, "; flavor: ", flavor, "\n", paste0(rr$read_output(), collapse = "\n"), "\n" ) rr$kill_tree() } } parse_apib_results(results) }
N_SEC = 10 results_restrserve = apib_bench(fib_counts = c(15, 20, 25), keep_alive = -1, runtime_checks = FALSE, n_sec = N_SEC) results_plumber = apib_bench_plumber(fib_counts = c(15, 20, 25), keep_alive = -1, n_sec = N_SEC) results_compare = rbindlist(list(results_plumber, results_restrserve))
plot_results( results_compare, "Comparison", "../img/bench-rps-vs-plumber.png", facet = TRUE )
As can be seen RestRserce
performs very well on every workload and scales linearly with number of cores.
Additionally we may explore environments where web-service exposed directly to many clients without having load balancer or proxy behind it. This is not very common across real-world deployments, but still worth to keep in mind. We can be simulate such scenario by setting keep_alive = 0
:
results_restrserve = apib_bench(fib_counts = c(15, 20, 25), keep_alive = 0, runtime_checks = FALSE, n_sec = N_SEC) results_plumber = apib_bench_plumber(fib_counts = c(15, 20, 25), keep_alive = 0, n_sec = N_SEC) results_compare = rbindlist(list(results_plumber, results_restrserve))
plot_results( results_compare, "Comparison", "../img/bench-rps-vs-plumber-no-keepalive.png", facet = TRUE )
Due to the overhead of creating a new process for each request and R's byte compiler overhead RestRserve
with Rserve
backend does not perform as quickly as plumber
when computing instantaneous routes. However, RestRserve
still shows it's strength when executing routes that have high computational costs. No extra coding logic is needed to leverage RestRserve
's multi-threaded execution. Mixing plumber
and future
together for high computation routes brings performance that scales with the number of concurrent requests, but at the cost of extra route logic and domain knowledge.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.