Description Usage Arguments Details Value
estimates and estimate objects and methods
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ## S3 method for class 'estimate'
as.matrix(x, burn = 0, thin = 1,
what = c("params", "probs"))
## S3 method for class 'estimates'
as.matrix(x, burn = 0, thin = 1,
what = c("params", "probs"))
as.mcmc.estimate(x, ..., burn = 0, thin = 1, what = c("params",
"probs"))
as.mcmc.list.estimates(x, ..., burn = 0, thin = 1, what = c("params",
"probs"))
as_tibble.estimate(x, ..., burn = 0, thin = 1, what = c("params",
"probs"), details = T)
as_tibble.estimates(x, ..., burn = 0, thin = 1, what = c("params",
"probs"), details = T)
|
burn |
number or percent of iterations to discard |
thin |
thinning interval. Keep every |
what |
returns either parameter values or posterior probabilities Pr(Z = 1) |
... |
use to select variables a la |
details |
a |
An estimates object is merely a list of
estimate objects. Each estimate object contains parameter
samples for a given chain. They have a fairly complicated structure that
I describe in more details below. Those objects should never be used
directly, but rather be converted to more familiar data types.
In particular, the as.mcmc and as.mcmc.list methods
should be used to perform additional diagnostics using the coda
package.
An estimate object contains the following fields:
betaa kBeta x 2 x nSamples array with draws of beta coefficients
gammaa kGamma x nSamples matrix with draws of gamma coefficients
pZa nMun x nSamples matrix with posterior Pr(Z = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.