##' @title Aggreagate quantitative features
##'
##' @description
##'
##' These functions take a matrix of quantitative features `x` and
##' aggregate the features (rows) according to either a vector (or
##' factor) `INDEX` or an adjacency matrix `MAT`. The aggregation
##' method is defined by function `FUN`.
##'
##' Adjacency matrices are an elegant way to explicitly encode for
##' shared peptides (see example below) during aggregation.
##'
##' @section Vector-based aggregation functions:
##'
##' When aggregating with a vector/factor, user-defined functions
##' must return a vector of length equal to `ncol(x)` for each level
##' in `INDEX`. Examples thereof are:
##'
##' - [medianPolish()] to fits an additive model (two way
##' decomposition) using Tukey's median polish procedure using
##' [stats::medpolish()];
##'
##' - [robustSummary()] to calculate a robust aggregation using
##' [MASS::rlm()];
##'
##' - [base::colMeans()] to use the mean of each column;
##'
##' - [base::colSums()] to use the sum of each column;
##'
##' - [matrixStats::colMedians()] to use the median of each column.
##'
##' @section Matrix-based aggregation functions:
##'
##' When aggregating with an adjacency matrix, user-defined
##' functions must return a new matrix. Examples thereof are:
##'
##' - `colSumsMat(x, MAT)` aggregates by the summing the peptide intensities
##' for each protein. Shared peptides are re-used multiple times.
##'
##' - `colMeansMat(x, MAT)` aggregation by the calculating the mean of
##' peptide intensities. Shared peptides are re-used multiple
##' times.
##'
##' @section Handling missing values:
##'
##' By default, missing values in the quantitative data will propagate
##' to the aggregated data. You can provide `na.rm = TRUE` to most
##' functions listed above to ignore missing values, except for
##' `robustSummary()` where you should supply `na.action = na.omit`
##' (see `?MASS::rlm`).
##'
##' @family Quantitative feature aggregation
##'
##' @name aggregate
##'
##' @aliases aggregate_by_vector aggregate_by_vector
##'
##' @author Laurent Gatto and Samuel Wieczorek (aggregation from an
##' adjacency matrix).
##'
##' @examples
##'
##' x <- matrix(c(10.39, 17.16, 14.10, 12.85, 10.63, 7.52, 3.91,
##' 11.13, 16.53, 14.17, 11.94, 11.51, 7.69, 3.97,
##' 11.93, 15.37, 14.24, 11.21, 12.29, 9.00, 3.83,
##' 12.90, 14.37, 14.16, 10.12, 13.33, 9.75, 3.81),
##' nrow = 7,
##' dimnames = list(paste0("Pep", 1:7), paste0("Sample", 1:4)))
##' x
##'
##' ## -------------------------
##' ## Aggregation by vector
##' ## -------------------------
##'
##' (k <- paste0("Prot", c("B", "E", "X", "E", "B", "B", "E")))
##'
##' aggregate_by_vector(x, k, colMeans)
##' aggregate_by_vector(x, k, robustSummary)
##' aggregate_by_vector(x, k, medianPolish)
##'
##' ## -------------------------
##' ## Aggregation by matrix
##' ## -------------------------
##'
##' adj <- matrix(c(1, 0, 0, 1, 1, 1, 0, 0,
##' 1, 0, 1, 0, 0, 1, 0, 0,
##' 1, 0, 0, 0, 1),
##' nrow = 7,
##' dimnames = list(paste0("Pep", 1:7),
##' paste0("Prot", c("B", "E", "X"))))
##' adj
##'
##' ## Peptide 4 is shared by 2 proteins (has a rowSums of 2),
##' ## namely proteins B and E
##' rowSums(adj)
##'
##' aggregate_by_matrix(x, adj, colSumsMat)
##' aggregate_by_matrix(x, adj, colMeansMat)
##'
##' ## ---------------
##' ## Missing values
##' ## ---------------
##'
##' x <- matrix(c(NA, 2:6), ncol = 2,
##' dimnames = list(paste0("Pep", 1:3),
##' c("S1", "S2")))
##' x
##'
##' ## simply use na.rm = TRUE to ignore missing values
##' ## during the aggregation
##'
##' (k <- LETTERS[c(1, 1, 2)])
##' aggregate_by_vector(x, k, colSums)
##' aggregate_by_vector(x, k, colSums, na.rm = TRUE)
##'
##' (adj <- matrix(c(1, 1, 0, 0, 0, 1), ncol = 2,
##' dimnames = list(paste0("Pep", 1:3),
##' c("A", "B"))))
##' aggregate_by_matrix(x, adj, colSumsMat, na.rm = FALSE)
##' aggregate_by_matrix(x, adj, colSumsMat, na.rm = TRUE)
##'
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.