Description Usage Arguments Value Examples
Projective nonnegative matrix factorization based on I-divergence (non-nomalized KL-divergence)
1 2 3 4 5 6 7 8 |
X |
Input data matrix |
nmfMod |
NMF model from the NMF package |
tol |
tolerance for stopping criteria |
maxIter |
Maximum number of iterations |
verbose |
Print status messages |
Fitted NMF model, as defined in NMF package.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | library(NMF)
NMF::setNMFMethod("PNMFKL", pNMF::PNMFKL)
mkD <- function(NOISE=TRUE) {
n <- 1000 # rows
counts <- c(30, 10, 20, 10, 15, 15) # samples
syntheticNMF(n=n, r=counts, offset = NULL, noise = NOISE,
factors = FALSE, seed = 99)
}
k<-mkD()
estim <- nmf(k, 6, method="PNMFKL", nrun=1)
## Not run:
V.random <- randomize(k)
estim.r2 <- nmf(k, 2:20, method="PNMFKL", nrun=30)
estim.r2.random <- nmf(V.random, 2:20, method="PNMF", nrun=30)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.