PNMFKL: Projective nonnegative matrix factorization based on...

Description Usage Arguments Value Examples

View source: R/pnmf.R

Description

Projective nonnegative matrix factorization based on I-divergence (non-nomalized KL-divergence)

Usage

1
2
3
4
5
6
7
8
PNMFKL(
  X,
  nmfMod,
  tol = 1e-05,
  maxIter = 5000,
  verboseN = FALSE,
  zerotol = 1e-10
)

Arguments

X

Input data matrix

nmfMod

NMF model from the NMF package

tol

tolerance for stopping criteria

maxIter

Maximum number of iterations

verbose

Print status messages

Value

Fitted NMF model, as defined in NMF package.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
library(NMF)
NMF::setNMFMethod("PNMFKL", pNMF::PNMFKL)
mkD <- function(NOISE=TRUE) {
  n <- 1000 # rows
  counts <- c(30, 10, 20, 10, 15, 15) # samples
  syntheticNMF(n=n, r=counts, offset = NULL, noise = NOISE,
               factors = FALSE, seed = 99)
}
k<-mkD()
estim <- nmf(k, 6, method="PNMFKL", nrun=1)

## Not run: 
V.random <- randomize(k)
estim.r2 <- nmf(k, 2:20, method="PNMFKL", nrun=30)
estim.r2.random <- nmf(V.random, 2:20,  method="PNMF", nrun=30)

## End(Not run)

richardbeare/pNMF documentation built on June 30, 2020, 6:33 p.m.