#gramRem_load-traits
# load data
traits <-read_delim("~/OneDrive - University of Bergen/Research/FunCaB/Data/veg_traits/SeedClim_Traits_2016.csv", delim = ";")
# create local weighted means
traitdata <- traits %>%
rename(LA = "Leaf_area", CN = "CN_ratio", siteID = "site") %>%
mutate(siteID = recode(siteID, "Ulvehaugen" = "Ulvhaugen")) %>%
group_by(species) %>%
mutate(CN_mean_global = mean(CN, na.rm = TRUE)) %>%
group_by(siteID, species) %>%
mutate(
SLA_mean = mean(SLA, na.rm = TRUE),
Lth_mean = mean(Lth_ave, na.rm = TRUE),
Height_mean = mean(Height, na.rm = TRUE),
LDMC_mean = mean(LDMC, na.rm = TRUE),
LA_mean = mean(LA, na.rm = TRUE),
CN_mean = mean(CN, na.rm = TRUE)
) %>%
ungroup() %>%
select(siteID, species, CN_mean_global:CN_mean)
# adjust species names so they parse with my.GR.data
traitdata <- traitdata %>%
mutate(species = gsub("_", ".", species)) %>%
mutate(species = recode(species, "Hyp.mac" = 'Hype.mac', "Emp.nig" = "Emp.her")) %>%
distinct(siteID, species, .keep_all = TRUE)
# if the local CN mean is missing, fill it with the global mean for that species
traitdata <- traitdata %>%
group_by(siteID, species) %>%
mutate(CN_mean = if_else(is.na(CN_mean),
CN_mean_global,
CN_mean)) %>%
select(-CN_mean_global)
# not run #
#traitdata %>% filter(is.na(CN_mean)) %>% group_by(siteID) %>% summarise(n = n()) %>% head() %>% as.data.frame()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.