Description Usage Arguments Details Value References See Also Examples
Create a Classifier Chains model for multilabel classification.
1 2 3 4 5 6 7 8 |
mdata |
A mldr dataset used to train the binary models. |
base.algorithm |
A string with the name of the base algorithm. (Default:
|
chain |
A vector with the label names to define the chain order. If
empty the chain is the default label sequence of the dataset. (Default:
|
... |
Others arguments passed to the base algorithm for all subproblems. |
cores |
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
|
seed |
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: |
Classifier Chains is a Binary Relevance transformation method based to predict multi-label data. This is based on the one-versus-all approach to build a specific model for each label. It is different from BR method due the strategy of extended the attribute space with the 0/1 label relevances of all previous classifiers, forming a classifier chain.
An object of class CCmodel containing the set of fitted
models, including:
A vector with the chain order.
A vector with the label names in expected order.
A list of models named by the label names.
Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification. Machine Learning, 85(3), 333-359.
Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier Chains for Multi-label Classification. Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, 5782, 254-269.
Other Transformation methods:
brplus(),
br(),
clr(),
dbr(),
ebr(),
ecc(),
eps(),
esl(),
homer(),
lift(),
lp(),
mbr(),
ns(),
ppt(),
prudent(),
ps(),
rakel(),
rdbr(),
rpc()
1 2 3 4 5 6 7 8 9 10 11 12 13 | model <- cc(toyml, "RANDOM")
pred <- predict(model, toyml)
# Use a specific chain with C5.0 classifier
mychain <- sample(rownames(toyml$labels))
model <- cc(toyml, 'C5.0', mychain)
# Set a specific parameter
model <- cc(toyml, 'KNN', k=5)
#Run with multiple-cores
model <- cc(toyml, 'RF', cores = 2, seed = 123)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.