Description Usage Arguments Value References See Also Examples
Create a DBR classifier to predict multi-label data. This is a simple approach
that enables the binary classifiers to discover existing label dependency by
themselves. The idea of DBR is exactly the same used in BR+ (the training
method is the same, excepted by the argument estimate.models that
indicate if the estimated models must be created).
1 2 3 4 5 6 7 8 |
mdata |
A mldr dataset used to train the binary models. |
base.algorithm |
A string with the name of the base algorithm. (Default:
|
estimate.models |
Logical value indicating whether is necessary build
Binary Relevance classifier for estimate process. The default implementation
use BR as estimators, however when other classifier is desirable then use
the value |
... |
Others arguments passed to the base algorithm for all subproblems. |
cores |
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
|
seed |
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: |
An object of class DBRmodel containing the set of fitted
models, including:
A vector with the label names.
The BR model to estimate the values for the labels.
Only when the estimate.models = TRUE.
A list of final models named by the label names.
Montanes, E., Senge, R., Barranquero, J., Ramon Quevedo, J., Jose Del Coz, J., & Hullermeier, E. (2014). Dependent binary relevance models for multi-label classification. Pattern Recognition, 47(3), 1494-1508.
Recursive Dependent Binary Relevance
Other Transformation methods:
brplus(),
br(),
cc(),
clr(),
ebr(),
ecc(),
eps(),
esl(),
homer(),
lift(),
lp(),
mbr(),
ns(),
ppt(),
prudent(),
ps(),
rakel(),
rdbr(),
rpc()
1 2 3 4 5 6 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.