#' Suitable for ANOVA:
#' The function "blindDataAnova_MaskGroups" masks the label names for the
#' independent variables.
#'
#' @param df_original # original dataframe
#' @param y # name of dependent variable
#' @param predictors # name of predictors, for example c("expert", "conflict)
#' @param update_labels # if TRUE update labels to BLIND_[abbrevation]_[name]
#' @keywords Mask groups, ANOVA
#' @importFrom dplyr %>% mutate_if mutate_all
#'
blindDataAnova_MaskGroups <- function(df_original,
y,
predictors,
update_labels = TRUE){
# Step 1: Select only the grouping variables
df_predictors <- df_original[,predictors]
# Step 2: If grouping variables are not set as factor, convert into factors
df_predictors <-
df_predictors %>%
mutate_if(is.character, as.factor)
# Step 3: (helper) Function that can mask factor labels
maskLabels <- function(factor_variable){
# a) Extract number of labels
n_labels <- length(levels(factor_variable))
# b) Assign a new condition + n[i] at random (so it's not alphabetical)
# For example, a 2 factor "low/high" becomes "Condition 1/Condition 2"
levels(factor_variable) <- paste("Condition",
sample(1:n_labels, replace = F))
# c) Return randomized levels of factor variable
return(factor_variable)
}
# Step 4: Replace labels of all variables in df_predictors
for(i in 1:ncol(df_predictors)){
df_predictors[,i] <- maskLabels(df_predictors[,i])
}
# Step 5: Rename the predictors if update_labels = TRUE
if(update_labels){
names(df_predictors) <- paste0("BLIND_MG_", names(df_predictors))
}
# Step 5: Create blinded df of the masked labels of predictors and Y
# Conscious decision not to include variables that aren't blinded
# (so only output a dataset with blinded variables),
df_blindMaskGroups <- data.frame(df_original[,y], df_predictors)
# Return
return(df_blindMaskGroups)
} # End blindDataAnova_MaskGroups
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.