#' Suitable for regression:
#' This function creates a QQ norm plot for the residuals
#' @param df_original # original dataframe
#' @param y # name of dependent variable
#' @param predictors # name of predictors, for example c("expert", "conflict)
#' @keywords Hatvalues, Regression
#' @importFrom stats qqnorm qqline rstudent
#' @importFrom graphics plot abline text
#'
#
plotRegression_QQ <- function(df_original,
y,
predictors){
### Output:
# QQ norm plot with numbers indicating the observation indices that
# exceed the cut-offscore of k/(n-k-1)
#
### Steps:
# 1) Run original linear regression model and save output
# 2) Construct the plot
#
# Step 1: Run original linear regression model to extract studres-values later
lm_original = lm(paste0(y, " ~ ."), data = df_original)
# Construct plot
stats::qqnorm(rstudent(lm_original), # extract studentized residuals
pch = 1,
frame = T,
ylab = "Studentized Residuals",
main = " QQ Plot")
stats::qqline(rstudent(lm_original), col = "steelblue", lwd = 2)
} # End plotRegression_QQ
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.