library(rwalkr)
library(fpp3)
start <- as.Date("2019-01-01")
end <- as.Date("2024-05-29")
pedestrian <- melb_walk(from = start, to = end, na.rm = FALSE, session = NULL)
melb_walkers <- pedestrian |>
mutate(Count = as.numeric(Count)) |>
group_by(Date, Sensor) |>
summarise(Count = sum(Count, na.rm=TRUE)) |>
ungroup() |>
mutate(Count = if_else(Count == 0L, NA_integer_, Count)) |>
as_tsibble(index = Date, key = Sensor)
# Remove censors with large numbers of missing values
nmiss <- melb_walkers |>
as_tibble() |>
group_by(Sensor) |>
summarise(nmiss = sum(is.na(Count))) |>
filter(nmiss < 10)
# Interpolate missing values
melb_walkers <- melb_walkers |>
filter(Sensor %in% nmiss$Sensor) |>
mutate(Count = zoo::na.approx(Count))
melb_walkers <- melb_walkers |>
as_tibble() |>
group_by(Date) |>
summarise(Count = mean(Count)) |>
as_tsibble(index = Date)
usethis::use_data(melb_walkers, overwrite=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.