# Generate simulated data -------------------------------------------------
#
# .generateIBMLogistic = function(path, r=0.1, m=0.05, alpha=5e-4, beta=5e-4,
# D=list(N=8e-5, P=8e-5),
# L=list(N=0.2, P=0.2), T=100,
# uselog=FALSE, seed=880820, ...) {
#
# if(!requireNamespace("ibm", quietly = TRUE))
# stop("You need to install the 'ibm' package.")
#
# # 'real' parameters
#
# N0 = m/(2*beta*L$P)
# P0 = r/(2*alpha*L$N)
#
# par_real = list(r=r, m=m, alpha=alpha, beta=beta, D=D, L=L,
# initial=list(N=N0, P=P0))
#
# set.seed(seed)
# pop = ibm:::.localLotkaVolterra(par=par_real, T=T, verbose=FALSE, spatial=FALSE)
#
# main.folder = file.path(path, "IBMLotkaVolterra")
# data.folder = file.path(main.folder, "data")
#
# if(!file.exists(data.folder)) dir.create(data.folder, recursive=TRUE)
#
# write.csv(pop$N, file.path(data.folder, "N.csv"))
# write.csv(pop$P, file.path(data.folder, "P.csv"))
#
# # parInfo.csv
#
# parInfo = list()
# parInfo$guess = list(r=0.1, m=0.1, alpha=1e-3, beta=1e-3,
# D=list(N=8e-5, P=8e-5), L=list(N=0.2, P=0.2),
# initial=list(N=pop$N[1], P=pop$P[1]))
# parInfo$lower = list(r=0, m=0, alpha=1e-8, beta=1e-8,
# D=list(N=1e-8,P=1e-8), L=list(N=1e-4,P=1e-4),
# initial=list(N=0.5*pop$N[1], P=0.5*pop$P[1]))
# parInfo$upper = list(r=1, m=1, alpha=1, beta=1,
# D=list(N=1,P=1), L=list(N=1,P=1),
# initial=list(N=1.5*pop$N[1], P=1.5*pop$P[1]))
#
# parInfo$phase = list(r=1, m=1, alpha=1, beta=1,
# D=list(N=NA,P=NA), L=list(N=NA,P=NA),
# initial=list(N=NA, P=NA))
#
# if(isTRUE(uselog)) {
#
# xparInfo = parInfo
# parInfo$guess$alpha = -log10(xparInfo$guess$alpha)
# parInfo$lower$alpha = -log10(xparInfo$upper$alpha)
# parInfo$upper$alpha = -log10(xparInfo$lower$alpha)
#
# parInfo$guess$beta = -log10(xparInfo$guess$beta)
# parInfo$lower$beta = -log10(xparInfo$upper$beta)
# parInfo$upper$beta = -log10(xparInfo$lower$beta)
#
# par_real$alpha = -log10(par_real$alpha)
# par_real$beta = -log10(par_real$beta)
#
# }
#
# # calibrationInfo.csv
#
# calibrationInfo = list()
# calibrationInfo$variable = c("N", "P")
# calibrationInfo$type = "lnorm2"
# calibrationInfo$calibrate = TRUE
# calibrationInfo$weights = 1
# calibrationInfo$useData = TRUE
#
# calibrationInfo = as.data.frame(calibrationInfo)
#
# write.csv(calibrationInfo, file.path(main.folder, "calibrationInfo.csv"), row.names=FALSE)
#
# constants = list(T=T, uselog=uselog)
#
# output = c(list(path=main.folder, par=par_real), constants, parInfo)
#
# return(output)
#
# }
#
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.