knitr::opts_chunk$set( collapse = TRUE, # # Uncomment to speed-up build eval = FALSE, comment = "#>", echo = TRUE, message = FALSE, warning = FALSE ) # devtools::load_all() sf::sf_use_s2(FALSE)
# library(stplanr) devtools::load_all() library(dplyr) library(tmap) library(ggplot2) library(tmaptools) rnet_x = sf::read_sf("https://github.com/ropensci/stplanr/releases/download/v1.0.2/rnet_x_ed.geojson") rnet_y = sf::read_sf("https://github.com/ropensci/stplanr/releases/download/v1.0.2/rnet_y_ed.geojson") # dups = duplicated(rnet_x$geometry) # summary(dups) # rnet_x = rnet_x |> # filter(!dups) # sf::write_sf(rnet_x, "~/github/ropensci/stplanr/rnet_x_ed.geojson", delete_dsn = TRUE)
We pre-processed the input simple geometry to make it even simpler as shown below.
# tmap_mode("view") # nrow(rnet_x) # summary(sf::st_length(rnet_x)) plot(sf::st_geometry(rnet_x)) rnet_x = rnet_subset(rnet_x, rnet_y, dist = 20) # nrow(rnet_x) # plot(sf::st_geometry(rnet_x)) rnet_x = rnet_subset(rnet_x, rnet_y, dist = 20, min_length = 5) # summary(sf::st_length(rnet_x)) # nrow(rnet_x) # plot(sf::st_geometry(rnet_x)) rnet_x = rnet_subset(rnet_x, rnet_y, dist = 20, rm_disconnected = TRUE) # nrow(rnet_x) plot(sf::st_geometry(rnet_x))
The initial merged result was as follows (original data on left)
funs = list(value = sum, Quietness = mean) brks = c(0, 100, 500, 1000, 5000) system.time({ rnet_merged = rnet_merge(rnet_x, rnet_y, dist = 10, segment_length = 20, funs = funs) }) m1 = tm_shape(rnet_y) + tm_lines("value", palette = "viridis", lwd = 5, breaks = brks) + tm_scale_bar() m2 = tm_shape(rnet_merged) + tm_lines("value", palette = "viridis", lwd = 5, breaks = brks) tmap_arrange(m1, m2, sync = TRUE, nrow = 1)
Speed-up the results by transforming to a projected coordinate system:
rnet_x = sf::st_transform(rnet_x, 27700) rnet_y = sf::st_transform(rnet_y, 27700)
rnet_y_segmented = line_segment(rnet_y, segment_length = 20, use_rsgeo = TRUE) system.time({ rnet_merged2 = rnet_merge(rnet_x, rnet_y, dist = 10, segment_length = 20, funs = funs) })
Let's check the results:
names(rnet_merged) summary(rnet_merged$value) summary(rnet_y$value) sum(rnet_merged$value * sf::st_length(rnet_merged), na.rm = TRUE) sum(rnet_y$value * sf::st_length(rnet_y), na.rm = TRUE)
We can more reduce the minimum segment length to ensure fewer NA values in the outputs:
rnet_merged = rnet_merge(rnet_x, rnet_y, dist = 20, segment_length = 10, funs = funs) m1 = tm_shape(rnet_y) + tm_lines("value", palette = "viridis", lwd = 5, breaks = brks) m2 = tm_shape(rnet_merged) + tm_lines("value", palette = "viridis", lwd = 5, breaks = brks) tmap_arrange(m1, m2, sync = TRUE, nrow = 1)
As shown in the results, some sideroad values have unrealistically high values:
Let's see the results again:
summary(rnet_merged$value) summary(rnet_y$value) sum(rnet_merged$value * sf::st_length(rnet_merged), na.rm = TRUE) sum(rnet_y$value * sf::st_length(rnet_y), na.rm = TRUE)
The good news: the number of NAs is down to only 21 compared with the previous 100+. Bad news: sideroads have been assigned values from the main roads.
We can fix this with the max_angle_diff
argument:
rnet_merged = rnet_merge(rnet_x, rnet_y, dist = 20, segment_length = 10, funs = funs, max_angle_diff = 20) m1 = tm_shape(rnet_y) + tm_lines("value", palette = "viridis", lwd = 5, breaks = brks) m2 = tm_shape(rnet_merged) + tm_lines("value", palette = "viridis", lwd = 5, breaks = brks) tmap_arrange(m1, m2, sync = TRUE, nrow = 1)
As shown in the results, the sideroad values are fixed:
Let's see the results again:
summary(rnet_merged$value) summary(rnet_y$value) sum(rnet_merged$value * sf::st_length(rnet_merged), na.rm = TRUE) sum(rnet_y$value * sf::st_length(rnet_y), na.rm = TRUE)
It also works with charaster strings:
rnet_y$char = paste0("road", sample(1:3, nrow(rnet_y), replace = TRUE)) most_common = function(x) { ux = unique(x) ux[which.max(tabulate(match(x, ux)))] } funs = list(char = most_common) system.time({ rnet_merged = rnet_merge(rnet_x, rnet_y, dist = 10, segment_length = 20, funs = funs) }) plot(rnet_y["char"]) plot(rnet_merged["char"])
Now let's testing on 3km dataset
rnet_x = sf::read_sf("https://github.com/nptscot/networkmerge/releases/download/v0.1/os_3km.geojson") rnet_y = sf::read_sf("https://github.com/nptscot/npt/releases/download/rnet_3km_buffer/rnet_3km_buffer.geojson")
Read columns from rnet_y to assign functions to them
# Extract column names from the rnet_x data frame name_list <- names(rnet_y) name_list # Initialize an empty list funs <- list() # Loop through each name and assign it a function based on specific conditions for (name in name_list) { if (name == "geometry") { next # Skip the current iteration } else if (name %in% c("Gradient", "Quietness")) { funs[[name]] <- mean } else { funs[[name]] <- sum } }
brks = c(0, 100, 500, 1000, 5000,10000) colors <- c("green", "yellow", "blue", "purple", "red") rnet_merged = rnet_merge(rnet_x, rnet_y, dist = 20, segment_length = 10, funs = funs, max_angle_diff = 20) # st_write(rnet_merged, "data-raw/3km_exmaple_merged.geojson", driver = "GeoJSON") rnet_merged <- st_make_valid(rnet_merged) m1 = tm_shape(rnet_y) + tm_lines("all_fastest_bicycle", palette = "viridis", lwd = 5, breaks = brks) m2 = tm_shape(rnet_merged) + tm_lines("all_fastest_bicycle", palette = "viridis", lwd = 5, breaks = brks) tmap_arrange(m1, m2, sync = TRUE, nrow = 1)
Read 3km_exmaple_merged from github
exmaple_3km = sf::read_sf("https://github.com/nptscot/networkmerge/releases/download/v0.1/3km_exmaple_merged.geojson") names(rnet_y) summary(rnet_y$all_fastest_bicycle) summary(exmaple_3km$all_fastest_bicycle) sum(exmaple_3km$all_fastest_bicycle * sf::st_length(exmaple_3km), na.rm = TRUE) sum(rnet_y$all_fastest_bicycle * sf::st_length(rnet_y), na.rm = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.