| evaluate | R Documentation | 
Evaluation of models with presence/absence data. Given a vector of presence and a vector of absence values (or a model and presence and absence points and predictors), confusion matrices are computed (for varying thresholds), and model evaluation statistics are computed for each confusion matrix / threshold. See the description of class ModelEvaluation-class for more info.
evaluate(p, a, model, x, tr, ...)
| p | presence points (x and y coordinates or SpatialPoints* object). Or, if  Or, a matrix with values to compute predictions for | 
| a | absence points (x and y coordinates or SpatialPoints* object). Or, if  Or, a matrix with values to compute predictions for | 
| model | any fitted model, including objects inheriting from 'DistModel'; not used when  | 
| x | Optional. Predictor variables (object of class Raster*). If present,  | 
| tr | Optional. a vector of threshold values to use for computing the confusion matrices | 
| ... | Additional arguments for the predict function | 
An object of ModelEvaluation-class
Robert J. Hijmans
Fielding, A.H. and J.F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49
threshold 
## See ?maxent for an example with real data.
# this is a contrived example:
# p has the predicted values for 50 known cases (locations) 
# with presence of the phenomenon (species)
p <- rnorm(50, mean=0.7, sd=0.3)
# a has the predicted values for 50 background locations (or absence)
a <- rnorm(50, mean=0.4, sd=0.4)
e <- evaluate(p=p, a=a)
threshold(e)
plot(e, 'ROC')
plot(e, 'TPR')
boxplot(e)
density(e)
str(e)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.