#' @rdname ml_random_forest
#' @export
ml_random_forest_regressor <- function(x, formula = NULL, num_trees = 20, subsampling_rate = 1,
max_depth = 5, min_instances_per_node = 1, feature_subset_strategy = "auto",
impurity = "variance", min_info_gain = 0, max_bins = 32,
seed = NULL, checkpoint_interval = 10, cache_node_ids = FALSE,
max_memory_in_mb = 256, features_col = "features", label_col = "label",
prediction_col = "prediction", uid = random_string("random_forest_regressor_"), ...) {
check_dots_used()
UseMethod("ml_random_forest_regressor")
}
ml_random_forest_regressor_impl <- function(x, formula = NULL, num_trees = 20, subsampling_rate = 1,
max_depth = 5, min_instances_per_node = 1, feature_subset_strategy = "auto",
impurity = "variance", min_info_gain = 0, max_bins = 32,
seed = NULL, checkpoint_interval = 10, cache_node_ids = FALSE,
max_memory_in_mb = 256, features_col = "features", label_col = "label",
prediction_col = "prediction", uid = random_string("random_forest_regressor_"),
response = NULL, features = NULL, ...) {
ml_process_model(
x = x,
r_class = "ml_random_forest_regressor",
ml_function = new_ml_model_random_forest_regression,
features = features,
response = response,
uid = uid,
formula = formula,
invoke_steps = list(
features_col = features_col,
label_col = label_col,
prediction_col = prediction_col,
impurity = impurity,
checkpoint_interval = checkpoint_interval,
max_bins = max_bins,
max_depth = max_depth,
min_info_gain = min_info_gain,
min_instances_per_node = min_instances_per_node,
cache_node_ids = cache_node_ids,
max_memory_in_mb = max_memory_in_mb,
seed = seed,
num_trees = num_trees,
subsampling_rate = subsampling_rate,
feature_subset_strategy = feature_subset_strategy
)
)
}
# ------------------------------- Methods --------------------------------------
#' @export
ml_random_forest_regressor.spark_connection <- ml_random_forest_regressor_impl
#' @export
ml_random_forest_regressor.ml_pipeline <- ml_random_forest_regressor_impl
#' @export
ml_random_forest_regressor.tbl_spark <- ml_random_forest_regressor_impl
# ---------------------------- Constructors ------------------------------------
new_ml_random_forest_regression_model <- function(jobj) {
new_ml_prediction_model(
jobj,
# `lazy val featureImportances`
feature_importances = possibly_null(~ read_spark_vector(jobj, "featureImportances")),
# `lazy val totalNumNodes`
total_num_nodes = function() invoke(jobj, "totalNumNodes"),
# `def treeWeights`, `def trees`
tree_weights = function() invoke(jobj, "treeWeights"),
trees = function() {
invoke(jobj, "trees") %>%
purrr::map(new_ml_decision_tree_regression_model)
},
class = "ml_random_forest_regression_model"
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.