imputation.apply: imputation.apply - fill data gaps (NA valuse) with values...

Description Usage Arguments Value Examples

View source: R/imputation.R

Description

imputation.apply - fill data gaps (NA valuse) with values computed by inputation.prepare

Usage

1
imputation.apply(data, transformation_parameters, mark_artificial_values = F)

Arguments

transformation_parameters

- paramets obtainded from imputation.prepare function

mark_artificial_values

- for all columns with missing values add new column and mark artificial values in it (default False)

Value

data with NA values set based on transformation_parameters

Examples

1
2
3
4
5
iris_c = iris
fil = seq(from=1, to=150, by=2)
iris_c[fil, 1:2] = NA
p = inputation.prepare(iris_c, c(1, 2),  c("average", "median"))
after1 = inputation.apply(iris_c, p)

rzaluska/mow documentation built on May 4, 2019, 1:22 p.m.