#' do_deseq
#'
#' makes DESeq2 object
#' @param count_data countdata, from prep_for_deseq function
#' @param sample_data meta data
#' @param desing_formula design formula for comparison
#' @param low_count_filter filter for low counts, will remove genes with average counts < filter. Defult = 0
#' @import DESeq2
#' @export
do_deseq <- function(count_data, sample_data, design_formula,low_count_filter=0) {
dds <- DESeqDataSetFromMatrix(countData =count_data, colData=sample_data, design=design_formula)
count_filter_func <- function(x) { rowMeans(x) > low_count_filter}
dds <- dds[count_filter_func(counts(dds)),]
if("condition" %in% colnames(sample_data)) {
dds$condition <- relevel(dds$condition, ref="cont")
}
results <- DESeq(dds)
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.