biADMM.speed: bi-ADMM: a Biclustering Algorithm for the General Model...

Description Usage Arguments Value Examples

View source: R/biADMM.speed.R

Description

Same algorithm as biADMM. Call python code to speed up the running time.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
biADMM.speed(
  X,
  nu1,
  nu2,
  gamma_1,
  gamma_2,
  m,
  phi,
  prox = "l2",
  niters = 10,
  tol = 0.1,
  output = 1
)

Arguments

X

The data matrix to be clustered. The rows are the samples, and the columns are the features.

nu1

A regularization parameter for row shrinkage

nu2

A regularization parameter for column shrinkage

gamma_1

A regularization parameter for row shrinkage

gamma_2

A regularization parameter for column shrinkage

m

m-nearest-neighbors in the weight function

phi

The parameter phi in the weight function

prox

The proximal maps. Could calculate L1 norm, L2 norm, or L-infinity, use "l1", "l2", or "l-inf", respectively.

niters

Iteraion times

tol

Stopping criterion

output

When output = 1, print the results at each iteration. No print when output equals other value.

Value

A list of results, containing matrix of A, v, z, lambda1, and lambda2

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# generate dataset
set.seed(123)
X = data_gen(n = 100, p = 80)
# set parameters
nu1 = nu2 = gamma_1 = gamma_2 = 0.1
m = 5
phi = 0.5
# biADMM algorithm
res2 = biADMM.speed(X, nu1, nu2, gamma_1, gamma_2,
 m, phi, niter = 10, tol = 0.0001, output = 0)
dim(res2$A)

sakuramomo1005/biADMM documentation built on March 25, 2021, 1:38 p.m.