Description Usage Arguments Value Examples
View source: R/biADMM.compositional.R
biC-ADMM: Biclustering Algorithm for Model with Compositional Constraints
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | biC.ADMM(
X,
nu1,
nu2,
nu3,
gamma_1,
gamma_2,
m = 5,
phi = 0.5,
prox = "l2",
niter = 1000,
tol = 1e-05,
weight.scale = 1,
output = 1
)
|
X |
The data matrix to be clustered. The rows are the samples, and the columns are the features. |
nu1 |
A regularization parameter for row shrinkage |
nu2 |
A regularization parameter for column shrinkage |
nu3 |
A regularization parameter for compositional data constrain |
gamma_1 |
A regularization parameter for row shrinkage |
gamma_2 |
A regularization parameter for column shrinkage |
m |
m-nearest-neighbors in the weight function |
phi |
The parameter phi in the weight function |
prox |
The proximal maps. Could calculate L1 norm, L2 norm, or L-infinity, use "l1", "l2", or "l-inf", respectively. |
niter |
Iteraion times |
tol |
Stopping criterion |
weight.scale |
If weight.scale = 1, the code will make the input data have compositional structure. |
output |
When output = 1, print the results at each iteration. No print when output equals other value. |
A list of results, containing matrix of A, v, z, lambda1, lambda2, and lambda3
1 2 3 4 5 6 7 8 9 10 11 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.