#' Read and convert file to data frame
#'
#' This function reads a csv file and converts to a tibble data frame
#'
#' @param filename Name of the input csv file
#' @return If input file doesnt exist, this function will stop execution
#' and return error else it will return tibble data frame object of input file
#'
#' @examples
#' tryCatch({fars_read("accident_2015.csv.bz2")}, error = function(e){NULL})
#'
#' @importFrom readr read_csv
#' @importFrom dplyr tbl_df
#'
#' @export
fars_read <- function(filename) {
if(!file.exists(filename))
stop("file '", filename, "' does not exist")
data <- suppressMessages({
readr::read_csv(filename, progress = FALSE)
})
dplyr::tbl_df(data)
}
#' Generate file name from input numeric value
#'
#' This function reads a numeric value and creates a file name string
#'
#' @param year Numeric value of year
#' @return This function returns a string value of file name
#'
#' @examples
#' make_filename(2018)
#'
#' @export
make_filename <- function(year) {
year <- as.integer(year)
sprintf("accident_%d.csv.bz2", year)
}
#' Consolidate month & year data from multiple input files
#'
#' This function extracts and consolidates month and year fields from
#' multiple input files where each input file contains data for 1 year
#'
#' @param years A numeric vector of year values for which data is required
#' @return If input file doesnt exist for any corresponding input year a warning
#' will be returned indicating that the input year is invalid.
#' For all valid years, a list containing month and year fields of each input
#' year is returned.
#'
#' @examples
#' fars_read_years(c(2013,2014))
#' fars_read_years(2015)
#'
#' @importFrom dplyr mutate select
#' @importFrom magrittr %>%
#'
#' @export
fars_read_years <- function(years) {
lapply(years, function(year) {
file <- make_filename(year)
tryCatch({
dat <- fars_read(file)
dplyr::mutate_(dat, year = ~year) %>%
dplyr::select_(~MONTH, ~year)
}, error = function(e) {
warning("invalid year: ", year)
return(NULL)
})
})
}
#' Summarize month & year data from multiple input files
#'
#' This function summarizes consolidated month and year fields from
#' multiple input files where each input file contains data for 1 year
#'
#' @param years A numeric vector of year values for which data is required
#' @return This functions returns a tibble data frame giving counts summarized
#' by month and year, where the intersection of a row representing month
#' and column representing year, gives summarized counts for that particular
#' month and year
#'
#' @examples
#' fars_summarize_years(c(2013,2014))
#'
#' @importFrom dplyr bind_rows group_by summarize
#' @importFrom tidyr spread
#' @importFrom magrittr %>%
#'
#' @export
fars_summarize_years <- function(years) {
tryCatch({
dat_list <- fars_read_years(years)
dplyr::bind_rows(dat_list) %>%
dplyr::group_by_(~year, ~MONTH) %>%
dplyr::summarize_(n = ~n()) %>%
tidyr::spread_("year", "n")
},warning = function(w) {
warning(conditionMessage(w))
return(NULL)
})
}
#' Plot of accident coordinates for given state and year on state map
#'
#' This function plots coordinates represented by latitude and longitude for
#' a given input state and year
#'
#' @param state.num A numeric value representing state in FARS dataset
#' @param year A numeric value of year
#' @return This functions returns a map of the input state with accident
#' cooridnates plotted onto the map.
#' Latitude greator than 90 and longitude 900 is not plotted
#' If input state is not found in dataset, error is returned with message as
#' "invalid state number <state number>"
#' If no accidents are present in dataset for given state, a message is returned
#' as "no accidents to plot"
#'
#' @examples
#' tryCatch({fars_map_state(1,2013)},error=function(e){return(NULL)})
#'
#' @importFrom dplyr filter
#' @importFrom maps map
#' @importFrom graphics points
#'
#' @export
fars_map_state <- function(state.num, year) {
filename <- make_filename(year)
tryCatch({
data <- fars_read(filename)
}, error = function(e) {
stop(conditionMessage(e))
})
state.num <- as.integer(state.num)
if(!(state.num %in% unique(data$STATE)))
stop("invalid STATE number: ", state.num)
data.sub <- dplyr::filter_(data, ~STATE == state.num)
if(nrow(data.sub) == 0L) {
message("no accidents to plot")
return(invisible(NULL))
}
is.na(data.sub$LONGITUD) <- data.sub$LONGITUD > 900
is.na(data.sub$LATITUDE) <- data.sub$LATITUDE > 90
with(data.sub, {
maps::map("state", ylim = range(LATITUDE, na.rm = TRUE),
xlim = range(LONGITUD, na.rm = TRUE))
graphics::points(LONGITUD, LATITUDE, pch = 46)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.