Description Usage Arguments Details Value Author(s) References Examples
Density, distribution function, quantile function and random generation
for the normal distribution with mean equal to alpha
and standard deviation equal to beta
.
1 2 3 4 5 6 7 |
x, q |
vector of quantiles |
alpha |
vector of scale parameter values |
beta |
vector of shape parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Birnbaum and Saunders (1969) proposed the two-parameter Birnbaum-Saunders distribution with density
f_{T}(t) = \frac{1}{√{2π}} \exp≤ft[-\frac{1}{2α^{2}} ≤ft(\frac{t}{β}+\frac{β}{t}-2\right) \right] \frac{t^{-\frac{3}{2}} (t+β)}{2α√{β}}; \ t>0, α > 0, β > 0,
as a failure time distribution for fatigue failure caused under cyclic loading. The parameters alpha and beta are the shape and the scale parameters, respectively. In their derivation, it was assumed that the failure is due to the development and growth of a dominant crack.
dcbs
gives the density, pcbs
gives the distribution function,
qcbs
gives the quantile function, and rcbs
generates random deviates.
Víctor Leiva victor.leiva@uv.cl, Hugo Hernández hugo.hernande@msn.com, and Marco Riquelme mriquelm@ucm.cl.
Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions. J. Appl. Probab. 6(2): 637-652.
Chang D. S. and Tang, L. C. (1994). Random number generator for the Birnbaum-Saunders distribution. Computational and Industrial Engineering, 27(1-4):345-348.
Leiva, V., Sanhueza, A., Sen, P. K., and Paula, G. A. (2006). Random number generators for the generalized Birnbaum-Saunders distribution. Submitted to Publication.
Rieck, J. R. (2003). A comparison of two random number generators for the Birnbaum-Saunders distribution. Communications in Statistics - Theory and Methods, 32(5):929-934.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## density for the Birnbaum-Saunders distribution
## with parameters alpha=0.5 y beta=1.0 in x=3.
dcbs(3,alpha=0.5,beta=1.0,log=FALSE)
## cdf for the Birnbaum-Saunders distribution
## with parameters alpha=0.5 y beta=1.0 in x=3.
pcbs(3,alpha=0.5,beta=1.0,log=FALSE)
## quantil function for p=0.5 in the Birnbaum-Saunders distribution
qcbs(0.5,alpha=0.5,beta=1.0,log=FALSE)
## Examples for simulations
rcbs(n=6,alpha=0.5,beta=1.0)
sample<-rcbs(n=100,alpha=0.5,beta=1.0)
## Higtogram for sample
hist(sample)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.