Description Usage Arguments Details Value Note Author(s) References Examples
The fuction ZARBS()
defines the ZARBS distribution, a two paramenter
distribution, for a gamlss.family object to be used in GAMLSS fitting using using the
function gamlss()
. The zero adjusted Birnbaum-Saunders distribution is similar
to the Birnbaum-Saunders distribution but allows zeros as y values. The extra parameter
models the probabilities at zero. The functions dZARBS, pZARBS, qZARBS and rZARBS define
the density, distribution function, quantile function and random generation for
the ZARBS. plotZARBS can be used to plot the distribution. meanZARBS calculates the expected
value of the response for a fitted model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ZARBS(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZARBS(x, mu = 1, sigma = 1, nu = 0.1, log = FALSE)
pZARBS(q, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
qZARBS(p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
rZARBS(n, mu = 0.5, sigma = 1, nu = 0.1)
plotZARBS(
mu = 0.5,
sigma = 1,
nu = 0.1,
from = 0,
to = 0.999,
n = 101,
title = "title",
...
)
meanZARBS(obj)
|
mu.link |
object for which the extraction of model residuals is meaningful. |
sigma.link |
type of residual to be used. |
nu.link |
link function of the parameter nu. |
x, q |
vector of quantiles. |
mu |
vector of scale parameter values. |
sigma |
vector of shape parameter values. |
nu |
vector of mixture parameter values. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
from |
where to start plotting the distribution from. |
to |
up to where to plot the distribution. |
title |
title of the plot. |
... |
other graphical parameters for plotting. |
obj |
a fitted ZARBS object. |
The parametrization of the zero adjusted reparameterized Birnbaum-Saunders distribution given in the function ZARBS() is
f_{Y}(y;μ,δ,p) =\frac{[1-p]√{δ+1}}{4\,y^{3/2}\,√{πμ}}≤ft[y+\frac{δμ}{δ+1} \right]\exp≤ft(-\frac{δ}{4}≤ft[\frac{y[δ+1]}{δμ}+\frac{δμ}{y[δ+1]}-2\right]\right) I_{(0, ∞)}(y)+ pI_{\{0\}}(y).
returns a gamlss.family
object which can be used to fit a normal distribution in the gamlss()
function.
For the function ZARBS(), mu is the mean and sigma is the precision parameter and nu is the proportion of zeros of the ZARBS distribution.
Manoel Santos-Neto manoel.ferreira@ufcg.edu.br, F.J.A. Cysneiros cysneiros@de.ufpe.br, Victor Leiva victorleivasanchez@gmail.com and Michelli Barros michelli.karinne@gmail.com
Leiva, V., Santos-Neto, M., Cysneiros, F.J.A., Barros, M. (2016) A methodology for stochastic inventory models based on a zero-adjusted Birnbaum-Saunders distribution. Applied Stochastic Models in Business and Industry., 32(1), 74–89. doi:10.1002/asmb.2124.
Santos-Neto, M., Cysneiros, F.J.A., Leiva, V., Barros, M. (2016) Reparameterized Birnbaum-Saunders regression models with varying precision. Electronic Journal of Statistics, 10, 2825–2855. doi: 10.1214/16-EJS1187.
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.