View source: R/classification.h.R
classification | R Documentation |
Decision tree
classification(
data,
dep,
indep,
testSize = 0.33,
noOfFolds = 10,
testing,
reporting = list("classifMetrices"),
classifier,
minSplit = 20,
minBucket = 0,
complecity = 0.01,
maxCompete = 4,
maxSurrogate = 5,
unsurrogate = 2,
noCrossValidations = 10,
maxDepth = 30,
noOfTrees = 10,
maxDepthRandFor = 30,
sampleFraction = 1,
splitRule,
plotDecisionTree = FALSE,
predictedFreq = FALSE,
printRandForest = FALSE,
predictedFreqRF = FALSE
)
data |
. |
dep |
. |
indep |
. |
testSize |
. |
noOfFolds |
. |
testing |
. |
reporting |
. |
classifier |
. |
minSplit |
. |
minBucket |
. |
complecity |
. |
maxCompete |
. |
maxSurrogate |
. |
unsurrogate |
. |
noCrossValidations |
. |
maxDepth |
. |
noOfTrees |
. |
maxDepthRandFor |
. |
sampleFraction |
. |
splitRule |
. |
plotDecisionTree |
. |
predictedFreq |
. |
printRandForest |
. |
predictedFreqRF |
. |
A results object containing:
results$modelSettings | a html | ||||
results$confusion$matrix | a table | ||||
results$classificationMetrics$general | a table | ||||
results$classificationMetrics$class | a table | ||||
results$rocCurvePlot | an image | ||||
results$decisionTreeModel | an image | ||||
results$predictedFreqPlot | an image | ||||
results$printRandForest$randomForestModel | a table | ||||
results$text | a preformatted | ||||
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.