classification: Decision tree

View source: R/classification.h.R

classificationR Documentation

Decision tree

Description

Decision tree

Usage

classification(
  data,
  dep,
  indep,
  testSize = 0.33,
  noOfFolds = 10,
  testing,
  reporting = list("classifMetrices"),
  classifier,
  minSplit = 20,
  minBucket = 0,
  complecity = 0.01,
  maxCompete = 4,
  maxSurrogate = 5,
  unsurrogate = 2,
  noCrossValidations = 10,
  maxDepth = 30,
  noOfTrees = 10,
  maxDepthRandFor = 30,
  sampleFraction = 1,
  splitRule,
  plotDecisionTree = FALSE,
  predictedFreq = FALSE,
  printRandForest = FALSE,
  predictedFreqRF = FALSE
)

Arguments

data

.

dep

.

indep

.

testSize

.

noOfFolds

.

testing

.

reporting

.

classifier

.

minSplit

.

minBucket

.

complecity

.

maxCompete

.

maxSurrogate

.

unsurrogate

.

noCrossValidations

.

maxDepth

.

noOfTrees

.

maxDepthRandFor

.

sampleFraction

.

splitRule

.

plotDecisionTree

.

predictedFreq

.

printRandForest

.

predictedFreqRF

.

Value

A results object containing:

results$modelSettings a html
results$confusion$matrix a table
results$classificationMetrics$general a table
results$classificationMetrics$class a table
results$rocCurvePlot an image
results$decisionTreeModel an image
results$predictedFreqPlot an image
results$printRandForest$randomForestModel a table
results$text a preformatted

sbalci/ClinicoPathJamoviModule documentation built on Feb. 25, 2025, 6:34 a.m.