#' Load currencies data from CSV file
#'
#' @return a data.table containing the currencies
#' @importFrom readr read_delim cols col_date col_double col_skip locale
#' @import data.table
#' @importFrom stats na.omit
#' @export
#' @example data_file.load_currencies()
data_file.load_currencies <- function() {
suppressWarnings(
data_list <- readr::read_delim(system.file("testdata/HISTORICAL_CURRENCY_RATES.csv", package = "fin.backend"),
delim = ";", escape_double = FALSE, col_types = cols(
`Titre :` = col_date(format = "%d/%m/%Y"),
`Dollar australien (AUD)` = col_double(),
`Lev bulgare (BGN)` = col_skip(),
`Real brésilien (BRL)` = col_skip(),
`Dollar canadien (CAD)` = col_double(),
`Franc suisse (CHF)` = col_double(),
`Yuan renminbi chinois (CNY)` = col_double(),
`Livre chypriote (CYP)` = col_skip(),
`Couronne tchèque (CZK)` = col_skip(),
`Couronne danoise (DKK)` = col_skip(),
`Couronne estonienne (EEK)` = col_skip(),
`Livre sterling (GBP)` = col_double(),
`Dollar de Hong Kong (HKD)` = col_skip(),
`Kuna croate (HRK)` = col_skip(),
`Forint hongrois (HUF)` = col_skip(),
`Roupie indonésienne (IDR)` = col_skip(),
`Sheqel israélien (ILS)` = col_skip(),
`Roupie Indienne (100 paise)` = col_double(),
`Couronne islandaise (ISK)` = col_skip(),
`Yen japonais (JPY)` = col_double(),
`Won coréen (KRW)` = col_skip(),
`Litas lituanien (LTL)` = col_skip(),
`Lats letton (LVL)` = col_skip(),
`Livre maltaise (MTL)` = col_skip(),
`Peso méxicain (MXN)` = col_skip(),
`Ringgit malaisien (MYR)` = col_skip(),
`Couronne norvégienne (NOK)` = col_skip(),
`Dollar neo-zélandais (NZD)` = col_skip(),
`Peso philippin (PHP)` = col_skip(),
`Zloty polonais (PLN)` = col_skip(),
`Leu roumain (RON)` = col_skip(),
`Rouble russe (RUB)` = col_skip(),
`Couronne suédoise (SEK)` = col_skip(),
`Dollar de Singapour (SGD)` = col_skip(),
`Tolar slovène (SIT)` = col_skip(),
`Couronne slovaque (SKK)` = col_skip(),
`Baht thaïlandais (THB)` = col_skip(),
`Livre turque (TRY)` = col_skip(),
`Dollar des Etats-Unis (USD)` = col_double(),
`Rand sud-africain (ZAR)` = col_skip()
),
locale = locale(date_names = "fr", decimal_mark = ","),
trim_ws = TRUE)
)
data_dt <- na.omit(setDT(data_list, check.names = TRUE))
data_dt <- setnames(data_dt, c("date", "aud", "cad", "chf", "cny", "gbp", "inr", "jpy", "usd"))
data_dt <- data_dt[, date := format(date, "%Y-%m-%d")]
setkey (data_dt, date)
}
#' Load FCHI (CAC40) indice from CSV file
#'
#' @return a data.table containing the indice's values
#' @importFrom readr read_delim
#' @export
data_file.load_fchi <- function() {
suppressWarnings(
data_list <- readr::read_delim(system.file("testdata/HISTORICAL_FCHI.csv", package = "fin.backend"),
col_types = cols(
Date = col_date(format = "%Y-%m-%d"),
Open = col_double(),
High = col_double(),
Low = col_double(),
Close = col_skip(),
`Adj Close` = col_double(),
Volume = col_double()
),
na = "NA")
)
data_dt <- na.omit(setDT(data_list, check.names = TRUE))
data_dt <- setnames(data_dt, c("date", "open", "high", "low", "close", "volume"))
data_dt_new <- data_dt[, date := as.character(date)]
data_dt_new <- setkey(data_dt_new, date)
data_dt_new[data_dt_new$volume > 0,]
}
#' Load EURIBOR values from CSV file
#'
#' @return a data.table containing the EURIBOR's values
#' @importFrom readr read_delim
#' @export
data_file.load_euribor <- function() {
suppressWarnings(
data_csv <- data_list <- readr::read_delim( system.file("testdata/HISTORICAL_INTERBANK_RATES.csv", package = "fin.backend"),
delim = ";", escape_double = FALSE, col_types = cols(
`Titre :` = col_date(format = "%d/%m/%Y"),
`EURIBOR à 1 mois` = col_double(),
`EURIBOR à 1 semaine` = col_double(),
`EURIBOR à 12 mois` = col_double(),
`EURIBOR à 3 mois` = col_double(),
`EURIBOR à 6 mois` = col_double(),
`€STR - Méthode de calcul` = col_skip(),
`€STR - Nombre de banques` = col_skip(),
`€STR - Nombre de transactions` = col_skip(),
`€STR - Taux au 25ème percentile des volumes` = col_skip(),
`€STR - Taux au 75ème percentile des volumes` = col_skip(),
`€STR - Publication` = col_skip(),
`€STR - Volume total` = col_skip(),
`€STR - Part des 5 plus grandes banques` = col_skip(),
`€STR - Taux moyen ajusté pondéré en fonction du volume` = col_skip()
),
locale = locale(date_names = "fr", decimal_mark = ","),
na = "NA", trim_ws = TRUE )
)
data_dt <- na.omit(setDT(data_list, check.names = TRUE))
data_dt <- setnames(data_dt, c("date", "1m", "1s", "12m", "3m", "6m"))
data_dt <- data_dt[, date := format(date, "%Y-%m-%d")]
setkey (data_dt, date)
}
#' Load VIX values from CSV file
#'
#' @return a data.table containing the VIX's values
#' @importFrom readr read_delim
#' @importFrom stats na.omit
#' @export
data_file.load_vix <- function() {
suppressWarnings(
data_list <- readr::read_delim(system.file("testdata/HISTORICAL_VIX.csv", package = "fin.backend"),
col_types = cols(Date = col_date(format = "%m/%d/%Y"),
Close = col_skip(),
Volume = col_skip()))
)
data_dt <- na.omit(setDT(data_list, check.names = TRUE))
data_dt <- setnames(data_dt, c("date", "open", "high", "low", "close"))
data_dt <- data_dt[, date:=as.character(parse_date(date, format="%m/%d/%Y"))]
setkey (data_dt, date)
}
#' Load VXD values from CSV file
#'
#' @return a data.table containing the VXD's values
#' @importFrom readr read_delim
#' @importFrom stats na.omit
#' @export
data_file.load_vxd <- function() {
suppressWarnings(
data_list <- readr::read_delim(system.file("testdata/HISTORICAL_VXD.csv", package = "fin.backend"),
col_types = cols(DATE = col_date(format = "%m/%d/%Y")))
)
data_dt <- na.omit(setDT(data_list, check.names = TRUE))
data_dt <- setnames(data_dt, c("date", "open", "high", "low", "close"))
#data_dt <- data_dt[, date:=as.character(parse_date(date, format="%m/%d/%Y"))]
setkey (data_dt, date)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.