library(testthat)
library(directedRandomR)
### Context: test case for checking mutant operators table sample size checker
context("mutant-operators-sample-size")
test_that("CRelOpE Operator sample size - SQLite", {
setwd('../../')
library(dplyr)
# setting to the data
mutant_operator <- directedRandomR::collect_mutanttiming()
#setwd('~/phd_exper/mutantdata/bitbucket/directedrandomr/R/')
selected_operator <- "CCRelationalExpressionOperatorE"
db <- "SQLite"
# Filtering data from mutanttiming without iTrust
filtered_data <- mutant_operator %>% filter(operator == selected_operator, schema != "iTrust", dbms == db) %>% group_by(identifier, dbms)
# Selecting first schema to get the runs
first_schema <- filtered_data[1,3]
# empty var
test <- NULL
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "directedRandom") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting DR runs Non-iTrust
dr_minsitrust <- test %>% filter(generator == "directedRandom") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting DR runs iTrust
dr_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "directedRandom", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(dr_itrust) > 0) {
dr_itrust$number=1:nrow(dr_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(dr_itrust), 0)
dr <- rbind(dr_minsitrust, dr_itrust)
dr <- dr %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(dr), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "avs") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting AVM-R runs Non-iTrust
avmr_minsitrust <- test %>% filter(generator == "avs") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting AVM-R runs iTrust
avmr_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "avs", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(avmr_itrust) > 0) {
avmr_itrust$number=1:nrow(avmr_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(avmr_itrust), 0)
avmr <- rbind(avmr_minsitrust, avmr_minsitrust)
avmr <- avmr %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that AVM-R is 30 rows meaning the number of runs
expect_equal(nrow(avmr), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "avsDefaults") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting AVM-D runs Non-iTrust
avmd_minsitrust <- test %>% filter(generator == "avsDefaults") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting AVM-D runs iTrust
avmd_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "avsDefaults", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(avmd_itrust) > 0) {
avmd_itrust$number=1:nrow(avmd_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(avmd_itrust), 0)
avmd <- rbind(avmd_minsitrust, avmd_itrust)
avmd <- avmd %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(avmd), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "random") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting Random runs Non-iTrust
rand_minsitrust <- test %>% filter(generator == "random") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting Random runs iTrust
rand_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "random", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(rand_itrust) > 0) {
rand_itrust$number=1:nrow(rand_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(rand_itrust), 0)
rand <- rbind(rand_minsitrust, rand_itrust)
rand <- rand %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(rand), 30)
})
### Context: test case for checking mutant operators mean table results
context("mutant-operators-mean-results")
test_that("CRelOpE Operator mean results - SQLite", {
setwd('../../')
library(dplyr)
# setting to the data
# setwd('~/phd_exper/mutantdata/bitbucket/directedrandomr/')
# print(getwd())
# Collecting mutant operators from mutant timing
mutant_operator <- directedRandomR::collect_mutanttiming()
#setwd('~/phd_exper/mutantdata/bitbucket/directedrandomr/R/')
selected_operator <- "CCRelationalExpressionOperatorE"
db <- "SQLite"
# Filtering data from mutanttiming without iTrust
filtered_data <- mutant_operator %>% filter(operator == selected_operator, schema != "iTrust", dbms == db) %>% group_by(identifier, dbms)
# Selecting first schema to get the runs
first_schema <- filtered_data[1,3]
# empty var
test <- NULL
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "directedRandom") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting DR runs Non-iTrust
dr_minsitrust <- test %>% filter(generator == "directedRandom") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting DR runs iTrust
dr_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "directedRandom", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(dr_itrust) > 0) {
dr_itrust$number=1:nrow(dr_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(dr_itrust), 0)
dr <- rbind(dr_minsitrust, dr_itrust)
dr <- dr %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(dr), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "avs") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting AVM-R runs Non-iTrust
avmr_minsitrust <- test %>% filter(generator == "avs") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting AVM-R runs iTrust
avmr_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "avs", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(avmr_itrust) > 0) {
avmr_itrust$number=1:nrow(avmr_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(avmr_itrust), 0)
avmr <- rbind(avmr_minsitrust, avmr_minsitrust)
avmr <- avmr %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that AVM-R is 30 rows meaning the number of runs
expect_equal(nrow(avmr), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "avsDefaults") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting AVM-D runs Non-iTrust
avmd_minsitrust <- test %>% filter(generator == "avsDefaults") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting AVM-D runs iTrust
avmd_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "avsDefaults", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(avmd_itrust) > 0) {
avmd_itrust$number=1:nrow(avmd_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(avmd_itrust), 0)
avmd <- rbind(avmd_minsitrust, avmd_itrust)
avmd <- avmd %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(avmd), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "random") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting Random runs Non-iTrust
rand_minsitrust <- test %>% filter(generator == "random") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting Random runs iTrust
rand_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "random", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(rand_itrust) > 0) {
rand_itrust$number=1:nrow(rand_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(rand_itrust), 0)
rand <- rbind(rand_minsitrust, rand_itrust)
rand <- rand %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(rand), 30)
# Sort by runs
dr <- arrange(dr, number)
avmr <- arrange(avmr, number)
avmd <- arrange(avmd, number)
rand <- arrange(rand, number)
# Testing if the mean is correct to the table
average <- round(sum(dr$killed_mutants) / sum(dr$total_mutants) * 100, 2)
expect_equal(average, 82.33)
average <- round(sum(avmr$killed_mutants) / sum(avmr$total_mutants) * 100, 2)
expect_equal(average, 82.56)
average <- round(sum(avmd$killed_mutants) / sum(avmd$total_mutants) * 100, 2)
expect_equal(average, 81.67)
average <- round(sum(rand$killed_mutants) / sum(rand$total_mutants) * 100, 2)
expect_equal(average, 82.72)
})
### Context: test case for checking mutant operators U-Test results
context("mutant-operators-u-test-results")
test_that("CRelOpE operator U-test resutls - SQLite", {
setwd('../../')
library(dplyr)
# setting to the data
# setwd('~/phd_exper/mutantdata/bitbucket/directedrandomr/')
# print(getwd())
# Collecting mutant operators from mutant timing
mutant_operator <- directedRandomR::collect_mutanttiming()
#setwd('~/phd_exper/mutantdata/bitbucket/directedrandomr/R/')
selected_operator <- "CCRelationalExpressionOperatorE"
db <- "SQLite"
# Filtering data from mutanttiming without iTrust
filtered_data <- mutant_operator %>% filter(operator == selected_operator, schema != "iTrust", dbms == db) %>% group_by(identifier, dbms)
# Selecting first schema to get the runs
first_schema <- filtered_data[1,3]
# empty var
test <- NULL
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "directedRandom") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting DR runs Non-iTrust
dr_minsitrust <- test %>% filter(generator == "directedRandom") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting DR runs iTrust
dr_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "directedRandom", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(dr_itrust) > 0) {
dr_itrust$number=1:nrow(dr_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(dr_itrust), 0)
dr <- rbind(dr_minsitrust, dr_itrust)
dr <- dr %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(dr), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "avs") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting AVM-R runs Non-iTrust
avmr_minsitrust <- test %>% filter(generator == "avs") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting AVM-R runs iTrust
avmr_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "avs", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(avmr_itrust) > 0) {
avmr_itrust$number=1:nrow(avmr_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(avmr_itrust), 0)
avmr <- rbind(avmr_minsitrust, avmr_minsitrust)
avmr <- avmr %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that AVM-R is 30 rows meaning the number of runs
expect_equal(nrow(avmr), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "avsDefaults") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting AVM-D runs Non-iTrust
avmd_minsitrust <- test %>% filter(generator == "avsDefaults") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting AVM-D runs iTrust
avmd_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "avsDefaults", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(avmd_itrust) > 0) {
avmd_itrust$number=1:nrow(avmd_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(avmd_itrust), 0)
avmd <- rbind(avmd_minsitrust, avmd_itrust)
avmd <- avmd %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(avmd), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "random") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting Random runs Non-iTrust
rand_minsitrust <- test %>% filter(generator == "random") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting Random runs iTrust
rand_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "random", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(rand_itrust) > 0) {
rand_itrust$number=1:nrow(rand_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(rand_itrust), 0)
rand <- rbind(rand_minsitrust, rand_itrust)
rand <- rand %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(rand), 30)
# Sort by runs
dr <- arrange(dr, number)
avmr <- arrange(avmr, number)
avmd <- arrange(avmd, number)
rand <- arrange(rand, number)
# Testing Siginificant results to the table
p <- wilcox.test(dr$mutationScore, avmr$mutationScore, exact = FALSE)$p.value <= 0.05
expect_false(p)
p <- wilcox.test(dr$mutationScore, avmd$mutationScore, exact = FALSE)$p.value <= 0.05
expect_true(p)
p <- wilcox.test(dr$mutationScore, rand$mutationScore, exact = FALSE)$p.value <= 0.05
expect_false(p)
})
### Context: test case for checking mutant operators Effect Size results
context("mutant-operators-effect-size-results")
test_that("CRelOpE operator effect size results - SQLite", {
setwd('../../')
library(dplyr)
# setting to the data
# setwd('~/phd_exper/mutantdata/bitbucket/directedrandomr/')
# print(getwd())
# Collecting mutant operators from mutant timing
mutant_operator <- directedRandomR::collect_mutanttiming()
#setwd('~/phd_exper/mutantdata/bitbucket/directedrandomr/R/')
selected_operator <- "CCRelationalExpressionOperatorE"
db <- "SQLite"
# Filtering data from mutanttiming without iTrust
filtered_data <- mutant_operator %>% filter(operator == selected_operator, schema != "iTrust", dbms == db) %>% group_by(identifier, dbms)
# Selecting first schema to get the runs
first_schema <- filtered_data[1,3]
# empty var
test <- NULL
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "directedRandom") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting DR runs Non-iTrust
dr_minsitrust <- test %>% filter(generator == "directedRandom") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting DR runs iTrust
dr_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "directedRandom", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(dr_itrust) > 0) {
dr_itrust$number=1:nrow(dr_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(dr_itrust), 0)
dr <- rbind(dr_minsitrust, dr_itrust)
dr <- dr %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(dr), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "avs") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting AVM-R runs Non-iTrust
avmr_minsitrust <- test %>% filter(generator == "avs") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting AVM-R runs iTrust
avmr_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "avs", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(avmr_itrust) > 0) {
avmr_itrust$number=1:nrow(avmr_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(avmr_itrust), 0)
avmr <- rbind(avmr_minsitrust, avmr_minsitrust)
avmr <- avmr %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that AVM-R is 30 rows meaning the number of runs
expect_equal(nrow(avmr), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "avsDefaults") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting AVM-D runs Non-iTrust
avmd_minsitrust <- test %>% filter(generator == "avsDefaults") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting AVM-D runs iTrust
avmd_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "avsDefaults", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(avmd_itrust) > 0) {
avmd_itrust$number=1:nrow(avmd_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(avmd_itrust), 0)
avmd <- rbind(avmd_minsitrust, avmd_itrust)
avmd <- avmd %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(avmd), 30)
# Adding a number column represnting runs
ids <- filtered_data %>% filter(schema== first_schema[[1,1]], generator == "random") %>% select(identifier,dbms,schema,operator,type) %>% unique
ids$number=1:nrow(ids)
filtered_data %>% left_join(ids) %>% mutate(number=as.numeric(ifelse(is.na(number),1,number))) %>% ungroup %>% mutate(number = cummax(number)) -> test
# geting Random runs Non-iTrust
rand_minsitrust <- test %>% filter(generator == "random") %>% group_by(identifier, dbms, generator, number) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# geting Random runs iTrust
rand_itrust <- mutant_operator %>% filter(schema == "iTrust", generator == "random", type == "NORMAL", operator == selected_operator, dbms == db) %>% group_by(identifier, dbms, generator) %>% summarise(killed_mutants = sum(killed == "true"), total_mutants = (sum(killed == "true") + sum(killed == "false"))) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
if (nrow(rand_itrust) > 0) {
rand_itrust$number=1:nrow(rand_itrust)
}
# iTrust has 0 row for this operator
expect_equal(nrow(rand_itrust), 0)
rand <- rbind(rand_minsitrust, rand_itrust)
rand <- rand %>% group_by(number, generator, dbms) %>% summarise(killed_mutants = sum(killed_mutants), total_mutants = sum(total_mutants)) %>% mutate(mutationScore = round((killed_mutants/total_mutants) * 100, 2))
# Check that dr is 30 rows meaning the number of runs
expect_equal(nrow(rand), 30)
dr <- arrange(dr, number)
avmr <- arrange(avmr, number)
avmd <- arrange(avmd, number)
rand <- arrange(rand, number)
# Effect size
avmr_effectsize <- directedRandomR::effectsize_accurate(dr$mutationScore, avmr$mutationScore)$size
avmd_effectsize <- directedRandomR::effectsize_accurate(dr$mutationScore, avmd$mutationScore)$size
rand_effectsize <- directedRandomR::effectsize_accurate(dr$mutationScore, rand$mutationScore)$size
expect_equal(avmr_effectsize, "small")
expect_equal(avmd_effectsize, "medium")
expect_equal(rand_effectsize, "small")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.