#' Import monthly temperature and precipitation data
#'
#' This function imports monthly temperature and precipitation data from
#' \href{http://www.climateanalyzer.org/}{ClimateAnalyzer.org} into R.
#'
#' @param station_id The character string of the \emph{station_id} field from
#' \code{\link{stations}}.
#' @param start_year The four digit number of the first year of interest.
#' @param end_year The four digit number of the last year of interest. Default
#' is NULL. If NULL, current year will be used.
#' @param month A number for the month, 1 for January through 12 for December
#' or 'all' for all months. Default is 'all'.
#' @param convert Logical. If TRUE, data are precipitation and temperature
#' values are converted to metric. These converted values are included as
#' additional columns in the data frame denoted by "_mm" or "_C". Default is
#' FALSE.
#'
#' @return A \code{\link[tibble]{tibble}}.
#' @seealso The \code{\link{import_data}} wrapper function.
#' @export
#'
#' @examples
#' library(climateAnalyzeR)
#'
#' # Import monthly precipitation and temperature data
#' import_monthly(station_id = 'canyonlands_theneedle', start_year = 2000,
#' end_year = 2010)
#'
#' # Import monthly precipitation and temperature data for the month of June and
#' # convert values to metric
#' import_monthly(station_id = 'canyonlands_theneedle', start_year = 2000,
#' end_year = 2010, month = 6, convert = TRUE)
#'
import_monthly <- function(station_id, start_year, end_year = NULL,
month = 'all', convert = FALSE){
if(is.null(end_year)){end_year = lubridate::year(lubridate::today())}
# Pull monthly data and omit NAs
dat = pull_monthly(station_id, start_year, end_year, month,
table_type = "straight", norm_per = 'null') |>
stats::na.omit()
# Rename variables
colnames(dat) = c("year", "month", "prcp", "tmax", "tmin")
# Munge data so all months are included with NA's if there are missing data
dat = dat |>
dplyr::mutate("year" = as.numeric(year),
"month" = as.numeric(month)) |>
tidyr::gather("var", "value", c(-1, -2)) |>
tidyr::spread("month", "value", fill = NA) |>
tidyr::gather("month", "value", c(-1, -2), convert = TRUE) |>
tidyr::spread("var", "value", fill = NA) |>
dplyr::arrange("year", "month")
# Convert to metric
if (convert == TRUE){
dat = convert_prcp(dat)
dat = convert_temp(dat)
}
names(dat) = janitor::make_clean_names(names(dat))
return(tibble::as_tibble(dat))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.