Description Usage Details Author(s) References
Internal PFMC functions
1 2 3 4 5 6 7 8 9 10 11 12 | cv.ncvsurv(X, y, ..., cluster, nfolds=10, seed, returnY=FALSE, trace=FALSE)
ncvsurv(X, y, penalty=c("MCP", "SCAD", "lasso"), gamma=switch(penalty, SCAD=3.7, 3),
alpha=1, lambda.min=ifelse(n>p,.001,.05), nlambda=100, lambda,
eps=1e-4, max.iter=10000, convex=TRUE, dfmax=p,
penalty.factor=rep(1, ncol(X)),weights=rep(1,length(y[,1])),
warn=TRUE, returnX=FALSE, ...)
convexMin(b, X, penalty, gamma, l2, penalty.factor, a, Delta=NULL, weights)
ncvgetmin(lambda,cvm,cvsd)
lamNames(l)
setupLambdaCox(X, y, Delta, alpha, lambda.min, nlambda,
penalty.factor, weights=rep(1,length(Delta)))
std(X, weights)
|
Functions from R package ncvreg
, which are adapted to allow the
argument weights
on samples.
Shijie Quan, Shun He
R package ncvreg
, https://cran.r-project.org/web/packages/ncvreg/
Breheny, P. and Huang, J. (2011) Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann. Appl. Statist., 5: 232-253.
Subtype classification and heterogeneous prognosis model construction in precision medicine. Na You, Shun He, Xueqin Wang, Junxian Zhu and Heping Zhang
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.